AP FRQ Review – Mr. Rich Name: AP Calculus AB

Topic 9: Charts f, f', f"

x	-2	-2 < x < -1	-1	-1 < x < 1	1	1 < <i>x</i> < 3	3
f(x)	12	Positive	8	Positive	2	Positive	7
f'(x)	-5	Negative	0	Negative	0	Positive	$\frac{1}{2}$
g(x)	-1	Negative	0	Positive	3	Positive	1
g'(x)	2	Positive	$\frac{3}{2}$	Positive	0	Negative	-2

The twice-differentiable functions f and g are defined for all real numbers x. Values of f, f', g, and g' for various values of x are given in the table above.

- (a) Find the x-coordinate of each relative minimum of f on the interval [-2, 3]. Justify your answers.
- (b) Explain why there must be a value c, for -1 < c < 1, such that f''(c) = 0.
- (c) The function h is defined by $h(x) = \ln(f(x))$. Find h'(3). Show the computations that lead to your answer.
- (d) Evaluate $\int_{-2}^{3} f'(g(x))g'(x) dx$.

x	-2	-2 < x < -1	1	-1 < x < 1	1	1 < <i>x</i> < 3	3
f(x)	12	Positive	8	Positive	2	Positive	7
f'(x)	-5	Negative	0	Negative	0	Positive	$\frac{1}{2}$
g(x)	-1	Negative	0	Positive	3	Positive	1
g'(x)	2	Positive	$\frac{3}{2}$	Positive	0	Negative	-2

The twice-differentiable functions f and g are defined for all real numbers x. Values of f, f', g, and g' for various values of x are given in the table above.

- (a) Find the x-coordinate of each relative minimum of f on the interval [-2, 3]. Justify your answers.
- (b) Explain why there must be a value c, for -1 < c < 1, such that f''(c) = 0.
- (c) The function h is defined by $h(x) = \ln(f(x))$. Find h'(3). Show the computations that lead to your answer.

(d) Evaluate $\int_{-2}^{3} f'(g(x))g'(x) dx$.

 (a) x = 1 is the only critical point at which f' changes sign from negative to positive. Therefore, f has a relative minimum at x = 1. 	1 : answer with justification
(b) f' is differentiable $\Rightarrow f'$ is continuous on the interval $-1 \le x \le 1$ $\frac{f'(1) - f'(-1)}{1 - (-1)} = \frac{0 - 0}{2} = 0$	$2: \begin{cases} 1: f'(1) - f'(-1) = 0\\ 1: explanation, using Mean Value Theorem \end{cases}$
Therefore, by the Mean Value Theorem, there is at least one value c , $-1 < c < 1$, such that $f''(c) = 0$.	
(c) $h'(x) = \frac{1}{f(x)} \cdot f'(x)$ $h'(3) = \frac{1}{f(3)} \cdot f'(3) = \frac{1}{7} \cdot \frac{1}{2} = \frac{1}{14}$	$3:\begin{cases} 2:h'(x)\\ 1: \text{ answer} \end{cases}$
(d) $\int_{-2}^{3} f'(g(x))g'(x) dx = \left[f(g(x))\right]_{x=-2}^{x=3}$ $= f(g(3)) - f(g(-2))$ $= f(1) - f(-1)$ $= 2 - 8 = -6$	3: $\begin{cases} 2 : Fundamental Theorem of Calculus \\ 1 : answer \end{cases}$

x	f(x)	f'(x)	g(x)	g'(x)
1	-6	3	2	8
2	2	-2	-3	0
3	8	7	6	2
6	4	5	3	-1

The functions f and g have continuous second derivatives. The table above gives values of the functions and their derivatives at selected values of x.

(a) Let k(x) = f(g(x)). Write an equation for the line tangent to the graph of k at x = 3.

(b) Let
$$h(x) = \frac{g(x)}{f(x)}$$
. Find $h'(1)$.

(c) Evaluate $\int_1^3 f''(2x) dx$.

x	f(x)	f'(x)	g(x)	g'(x)
1	-6	3	2	8
2	2	-2	-3	0
3	8	7	6	2
6	4	5	3	-1

The functions f and g have continuous second derivatives. The table above gives values of the functions and their derivatives at selected values of x.

(a) Let k(x) = f(g(x)). Write an equation for the line tangent to the graph of k at x = 3.

(b) Let
$$h(x) = \frac{g(x)}{f(x)}$$
. Find $h'(1)$.

(c) Evaluate $\int_1^3 f''(2x) dx$.

(a) k(3) = f(g(3)) = f(6) = 4 $k'(3) = f'(g(3)) \cdot g'(3) = f'(6) \cdot 2 = 5 \cdot 2 = 10$ An equation for the tangent line is y = 10(x - 3) + 4. (b) $h'(1) = \frac{f(1) \cdot g'(1) - g(1) \cdot f'(1)}{(f(1))^2}$ $= \frac{(-6) \cdot 8 - 2 \cdot 3}{(-6)^2} = \frac{-54}{36} = -\frac{3}{2}$ (c) $\int_1^3 f''(2x) dx = \frac{1}{2} [f'(2x)]_1^3 = \frac{1}{2} [f'(6) - f'(2)]$ $= \frac{1}{2} [5 - (-2)] = \frac{7}{2}$ 3: $\begin{cases} 2 : \text{ sope at } x = 3 \\ 1 : \text{ equation for tangent line} \end{cases}$ 3: $\begin{cases} 2 : \text{ expression for } h'(1) \\ 1 : \text{ answer} \end{cases}$ 3: $\begin{cases} 2 : \text{ expression for } h'(1) \\ 1 : \text{ answer} \end{cases}$

r									
	x	0	0 < x < 1	1	1 < x < 2	2	2 < x < 3	3	3 < x < 4
	f(x)	-1	Negative	0	Positive	2	Positive	0	Negative
	f'(x)	4	Positive	0	Positive	DNE	Negative	-3	Negative
ĺ	f''(x)	-2	Negative	0	Positive	DNE	Negative	0	Positive

Let f be a function that is continuous on the interval [0, 4). The function f is twice differentiable except at x = 2. The function f and its derivatives have the properties indicated in the table above, where DNE indicates that the derivatives of f do not exist at x = 2.

- (a) For 0 < x < 4, find all values of x at which f has a relative extremum. Determine whether f has a relative maximum or a relative minimum at each of these values. Justify your answer.
- (b) On the axes provided, sketch the graph of a function that has all the characteristics of *f*. (Note: Use the axes provided in the pink test booklet.)
- (c) Let g be the function defined by $g(x) = \int_{1}^{x} f(t) dt$ on the open interval (0, 4). For

0 < x < 4, find all values of x at which g has a relative extremum. Determine whether g has a relative maximum or a relative minimum at each of these values. Justify your answer.

(d) For the function g defined in part (c), find all values of x, for 0 < x < 4, at which the graph of g has a point of inflection. Justify your answer.

x	0	0 < x < 1	1	1 < x < 2	2	2 < x < 3	3	3 < x < 4
f(x)	-1	Negative	0	Positive	2	Positive	0	Negative
f'(x)	4	Positive	0	Positive	DNE	Negative	-3	Negative
f''(x)	-2	Negative	0	Positive	DNE	Negative	0	Positive

Let f be a function that is continuous on the interval [0, 4). The function f is twice differentiable except at x = 2. The function f and its derivatives have the properties indicated in the table above, where DNE indicates that the derivatives of f do not exist at x = 2.

- (a) For 0 < x < 4, find all values of x at which f has a relative extremum. Determine whether f has a relative maximum or a relative minimum at each of these values. Justify your answer.
- (b) On the axes provided, sketch the graph of a function that has all the characteristics of f. (Note: Use the axes provided in the pink test booklet.)
- (c) Let g be the function defined by $g(x) = \int_{1}^{x} f(t) dt$ on the open interval (0, 4). For

0 < x < 4, find all values of x at which g has a relative extremum. Determine whether g has a relative maximum or a relative minimum at each of these values. Justify your answer.

(d) For the function g defined in part (c), find all values of x, for 0 < x < 4, at which the graph of g has a point of inflection. Justify your answer.

2 : $\begin{cases} 1 : \text{relative extremum at } x = 2 \\ 1 : \text{relative maximum with justification} \end{cases}$ 2 : $\begin{cases} 1 : \text{points at } x = 0, 1, 2, 3 \\ \text{and behavior at } (2, 2) \\ 1 : \text{appropriate increasing/decreasing} \\ \text{and concavity behavior} \end{cases}$

- (c) g'(x) = f(x) = 0 at x = 1, 3.
 g' changes from negative to positive at x = 1 so g has a relative minimum at x = 1. g' changes from positive to negative at x = 3 so g has a relative maximum at x = 3.
- (d) The graph of g has a point of inflection at x = 2 because g'' = f' changes sign at x = 2.

3:
$$\begin{cases} 1: g'(x) = f(x) \\ 1: \text{ critical points} \\ 1: \text{ answer with justification} \end{cases}$$

$$2: \begin{cases} 1: x = 2\\ 1: \text{ answer with justification} \end{cases}$$

x	f(x)	f'(x)	g(x)	g'(x)
1	6	4	2	5
2	9	2	3	1
3	10	- 4	4	2
4	-1	3	6	7

The functions f and g are differentiable for all real numbers, and g is strictly increasing. The table above gives values of the functions and their first derivatives at selected values of x. The function h is given by h(x) = f(g(x)) - 6.

- (a) Explain why there must be a value r for 1 < r < 3 such that h(r) = -5.
- (b) Explain why there must be a value c for 1 < c < 3 such that h'(c) = -5.
- (c) Let w be the function given by $w(x) = \int_{1}^{g(x)} f(t) dt$. Find the value of w'(3).
- (d) If g^{-1} is the inverse function of g, write an equation for the line tangent to the graph of $y = g^{-1}(x)$ at x = 2.

x	f(x)	f'(x)	g(x)	g'(x)
1	6	4	2	5
2	9	2	3	1
3	10	- 4	4	2
4	-1	3	6	7

The functions f and g are differentiable for all real numbers, and g is strictly increasing. The table above gives values of the functions and their first derivatives at selected values of x. The function h is given by h(x) = f(g(x)) - 6.

- (a) Explain why there must be a value r for 1 < r < 3 such that h(r) = -5.
- (b) Explain why there must be a value c for 1 < c < 3 such that h'(c) = -5.
- (c) Let w be the function given by $w(x) = \int_{1}^{g(x)} f(t) dt$. Find the value of w'(3).
- (d) If g^{-1} is the inverse function of g, write an equation for the line tangent to the graph of $y = g^{-1}(x)$ at x = 2.
- (a) h(1) = f(g(1)) 6 = f(2) 6 = 9 6 = 3h(3) = f(g(3)) - 6 = f(4) - 6 = -1 - 6 = -7Since h(3) < -5 < h(1) and h is continuous, by the Intermediate Value Theorem, there exists a value r, 1 < r < 3, such that h(r) = -5. (b) $\frac{h(3) - h(1)}{3 - 1} = \frac{-7 - 3}{3 - 1} = -5$ Since h is continuous and differentiable, by the Mean Value Theorem, there exists a value c, 1 < c < 3, such that h'(c) = -5. (c) $w'(3) = f(g(3)) \cdot g'(3) = f(4) \cdot 2 = -2$ (d) g(1) = 2, so $g^{-1}(2) = 1$.

$$(g^{-1})'(2) = \frac{1}{g'(g^{-1}(2))} = \frac{1}{g'(1)} = \frac{1}{5}$$

An equation of the tangent line is $y - 1 = \frac{1}{5}(x - 2)$.

 $2: \begin{cases} 1: h(1) \text{ and } h(3) \\ 1: \text{ conclusion, using IVT} \end{cases}$

2:
$$\begin{cases} 1: \frac{h(3) - h(1)}{3 - 1} \\ 1: \text{ conclusion, using MVT} \end{cases}$$

 $2: \begin{cases} 1 : apply chain rule \\ 1 : answer \end{cases}$

$$3: \begin{cases} 1:g^{-1}(2)\\ 1:(g^{-1})'(2)\\ 1: \text{ tangent line equation} \end{cases}$$

Let f be a function that is <u>even</u> and continuous on the closed interval [-3,3]. The function f and its derivatives have the properties indicated in the table below.

X	0	0 < x < 1	1	1 < x < 2	2	2 < x < 3
f (x)	1	Positive	0	Negative	-1	Negative
f '(x)	Undefined	Negative	0	Negative	Undefined	Positive
f ''(x)	Undefined	Positive	0	Negative	Undefined	Negative

- (a) Find the *x*-coordinate of each point at which *f* attains an absolute maximum value or an absolute minimum value. For each *x*-coordinate you give, state whether *f* attains an absolute maximum or an absolute minimum.
- (b) Find the x-coordinate of each point of inflection on the graph of f. Justify your answer.
- (c) In the *xy*-plane provided below, sketch the graph of a function with all the given characteristics of f.

Let f be a function that is <u>even</u> and continuous on the closed interval [-3,3]. The function f and its derivatives have the properties indicated in the table below.

X	0	0 < x < 1	1	1 < x < 2	2	2 < x < 3
f (x)	1	Positive	0	Negative	-1	Negative
f '(x)	Undefined	Negative	0	Negative	Undefined	Positive
f "(x)	Undefined	Positive	0	Negative	Undefined	Negative

- (a) Find the *x*-coordinate of each point at which f attains an absolute maximum value or an absolute minimum value. For each *x*-coordinate you give, state whether f attains an absolute maximum or an absolute minimum.
- (b) Find the *x*-coordinate of each point of inflection on the graph of f. Justify your answer.
- (c) In the *xy*-plane provided below, sketch the graph of a function with all the given characteristics of f.

- (a) Absolute maximum at x = 0Absolute minimum at $x = \pm 2$
- (b) Points of inflection at $x = \pm 1$ because the sign of f''(x) changes at x = 1and f is even

x	-1.5	-1.0	-0.5	0	0.5	1.0	1.5
f(x)	-1	-4	-6	-7	-6	-4	$^{-1}$
f'(x)	-7	-5	-3	0	3	5	7

Let f be a function that is differentiable for all real numbers. The table above gives the values of f and its derivative f' for selected points x in the closed interval $-1.5 \le x \le 1.5$. The second derivative of f has the property that f''(x) > 0 for $-1.5 \le x \le 1.5$.

- (a) Evaluate $\int_{0}^{1.5} (3f'(x)+4) dx$. Show the work that leads to your answer.
- (b) Write an equation of the line tangent to the graph of f at the point where x = 1. Use this line to approximate the value of f(1.2). Is this approximation greater than or less than the actual value of f(1.2)? Give a reason for your answer.
- (c) Find a positive real number r having the property that there must exist a value c with 0 < c < 0.5 and f''(c) = r. Give a reason for your answer.
- (d) Let g be the function given by $g(x) = \begin{cases} 2x^2 x 7 & \text{for } x < 0\\ 2x^2 + x 7 & \text{for } x \ge 0. \end{cases}$

The graph of g passes through each of the points (x, f(x)) given in the table above. Is it possible that f and g are the same function? Give a reason for your answer.

x	-1.5	-1.0	-0.5	0	0.5	1.0	1.5
f(x)	-1	-4	-6	-7	-6	-4	$^{-1}$
f'(x)	-7	-5	-3	0	3	5	7

Let f be a function that is differentiable for all real numbers. The table above gives the values of f and its derivative f' for selected points x in the closed interval $-1.5 \le x \le 1.5$. The second derivative of f has the property that f''(x) > 0 for $-1.5 \le x \le 1.5$.

- (a) Evaluate $\int_{0}^{1.5} (3f'(x)+4) dx$. Show the work that leads to your answer.
- (b) Write an equation of the line tangent to the graph of f at the point where x = 1. Use this line to approximate the value of f(1.2). Is this approximation greater than or less than the actual value of f(1.2)? Give a reason for your answer.
- (c) Find a positive real number r having the property that there must exist a value c with 0 < c < 0.5 and f''(c) = r. Give a reason for your answer.
- (d) Let g be the function given by $g(x) = \begin{cases} 2x^2 x 7 & \text{for } x < 0\\ 2x^2 + x 7 & \text{for } x \ge 0. \end{cases}$

The graph of g passes through each of the points (x, f(x)) given in the table above. Is it possible that f and g are the same function? Give a reason for your answer.

(a)
$$\int_{0}^{1.5} (3f'(x) + 4) dx = 3 \int_{0}^{1.5} f'(x) dx + \int_{0}^{1.5} 4 dx$$
$$= 3f(x) + 4x \Big|_{0}^{1.5} = 3(-1 - (-7)) + 4(15) = 24$$

(b)
$$y = 5(x - 1) - 4$$
$$f(1.2) \approx 5(0.2) - 4 = -3$$
The approximation is less than $f(1.2)$ because the graph of f is concave up on the interval $1 < x < 1.2$.
(c) By the Mean Value Theorem there is a c with $0 < c < 0.5$ such that $f''(c) = \frac{f'(0.5) - f'(0)}{0.5 - 0} = \frac{3 - 0}{0.5} = 6 = r$
(d)
$$\lim_{x \to 0^{-}} g'(x) = \lim_{x \to 0^{-}} (4x - 1) = -1$$
$$\lim_{x \to 0^{+}} g'(x) = \lim_{x \to 0^{+}} (4x + 1) = +1$$
Thus g' is not continuous at $x = 0$, but f' is continuous at $x = 0$, so $f \neq g$.
 $g''(x) = 4$ for all $x \neq 0$, but it was shown in part (c) that $f''(c) = 6$ for some $c \neq 0$, so $f \neq g$.