\qquad
\qquad Seat: \qquad AP Calculus AB

Topic 9: Charts f, f', f"

x	-2	$-2<x<-1$	-1	$-1<x<1$	1	$1<x<3$	3
$f(x)$	12	Positive	8	Positive	2	Positive	7
$f^{\prime}(x)$	-5	Negative	0	Negative	0	Positive	$\frac{1}{2}$
$g(x)$	-1	Negative	0	Positive	3	Positive	1
$g^{\prime}(x)$	2	Positive	$\frac{3}{2}$	Positive	0	Negative	-2

The twice-differentiable functions f and g are defined for all real numbers x. Values of f, f^{\prime}, g, and g^{\prime} for various values of x are given in the table above.
(a) Find the x-coordinate of each relative minimum of f on the interval $[-2,3]$. Justify your answers.
(b) Explain why there must be a value c, for $-1<c<1$, such that $f^{\prime \prime}(c)=0$.
(c) The function h is defined by $h(x)=\ln (f(x))$. Find $h^{\prime}(3)$. Show the computations that lead to your answer.
(d) Evaluate $\int_{-2}^{3} f^{\prime}(g(x)) g^{\prime}(x) d x$.

x	-2	$-2<x<-1$	-1	$-1<x<1$	1	$1<x<3$	3
$f(x)$	12	Positive	8	Positive	2	Positive	7
$f^{\prime}(x)$	-5	Negative	0	Negative	0	Positive	$\frac{1}{2}$
$g(x)$	-1	Negative	0	Positive	3	Positive	1
$g^{\prime}(x)$	2	Positive	$\frac{3}{2}$	Positive	0	Negative	-2

The twice-differentiable functions f and g are defined for all real numbers x. Values of f, f^{\prime}, g, and g^{\prime} for various values of x are given in the table above.
(a) Find the x-coordinate of each relative minimum of f on the interval $[-2,3]$. Justify your answers.
(b) Explain why there must be a value c, for $-1<c<1$, such that $f^{\prime \prime}(c)=0$.
(c) The function h is defined by $h(x)=\ln (f(x))$. Find $h^{\prime}(3)$. Show the computations that lead to your answer.
(d) Evaluate $\int_{-2}^{3} f^{\prime}(g(x)) g^{\prime}(x) d x$.
(a) $x=1$ is the only critical point at which f^{\prime} changes sign from negative to positive. Therefore, f has a relative minimum at $x=1$.
(b) f^{\prime} is differentiable $\Rightarrow f^{\prime}$ is continuous on the interval $-1 \leq x \leq 1$

1 : answer with justification
$2:\left\{\begin{array}{l}1: f^{\prime}(1)-f^{\prime}(-1)=0 \\ 1: \text { explanation, using Mean Value Theorem }\end{array}\right.$
$3:\left\{\begin{array}{l}2: h^{\prime}(x) \\ 1: \text { answer }\end{array}\right.$
$3:\left\{\begin{array}{l}2: \text { Fundamental Theorem of Calculus } \\ 1: \text { answer }\end{array}\right.$

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	-6	3	2	8
2	2	-2	-3	0
3	8	7	6	2
6	4	5	3	-1

The functions f and g have continuous second derivatives. The table above gives values of the functions and their derivatives at selected values of x.
(a) Let $k(x)=f(g(x))$. Write an equation for the line tangent to the graph of k at $x=3$.
(b) Let $h(x)=\frac{g(x)}{f(x)}$. Find $h^{\prime}(1)$.
(c) Evaluate $\int_{1}^{3} f^{\prime \prime}(2 x) d x$.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	-6	3	2	8
2	2	-2	-3	0
3	8	7	6	2
6	4	5	3	-1

The functions f and g have continuous second derivatives. The table above gives values of the functions and their derivatives at selected values of x.
(a) Let $k(x)=f(g(x))$. Write an equation for the line tangent to the graph of k at $x=3$.
(b) Let $h(x)=\frac{g(x)}{f(x)}$. Find $h^{\prime}(1)$.
(c) Evaluate $\int_{1}^{3} f^{\prime \prime}(2 x) d x$.
(a) $k(3)=f(g(3))=f(6)=4$
$k^{\prime}(3)=f^{\prime}(g(3)) \cdot g^{\prime}(3)=f^{\prime}(6) \cdot 2=5 \cdot 2=10$
$3:\left\{\begin{array}{l}2: \text { slope at } x=3 \\ 1: \text { equation for tangent line }\end{array}\right.$
An equation for the tangent line is $y=10(x-3) \div 4$.
(b) $h^{\prime}(1)=\frac{f(1) \cdot g^{\prime}(1)-g(1) \cdot f^{\prime}(1)}{(f(1))^{2}}$

$$
=\frac{(-6) \cdot 8-2 \cdot 3}{(-6)^{2}}=\frac{-54}{36}=-\frac{3}{2}
$$

(c) $\int_{1}^{3} f^{\prime \prime}(2 x) d x=\frac{1}{2}\left[f^{\prime}(2 x)\right]_{1}^{3}=\frac{1}{2}\left[f^{\prime}(6)-f^{\prime}(2)\right]$

$$
=\frac{1}{2}[5-(-2)]=\frac{7}{2}
$$

$3:\left\{\begin{array}{l}2: \text { expression for } h^{\prime}(1) \\ 1: \text { answer }\end{array}\right.$
$3:\left\{\begin{array}{l}2: \text { antiderivative } \\ 1: \text { answer }\end{array}\right.$

x	0	$0<x<1$	1	$1<x<2$	2	$2<x<3$	3	$3<x<4$
$f(x)$	-1	Negative	0	Positive	2	Positive	0	Negative
$f^{\prime}(x)$	4	Positive	0	Positive	DNE	Negative	-3	Negative
$f^{\prime \prime}(x)$	-2	Negative	0	Positive	DNE	Negative	0	Positive

Let f be a function that is continuous on the interval $[0,4)$. The function f is twice differentiable except at $x=2$. The function f and its derivatives have the properties indicated in the table above, where DNE indicates that the derivatives of f do not exist at $x=2$.
(a) For $0<x<4$, find all values of x at which f has a relative extremum. Determine whether f has a relative maximum or a relative minimum at each of these values. Justify your answer.
(b) On the axes provided, sketch the graph of a function that has all the characteristics of f. (Note: Use the axes provided in the pink test booklet.)
(c) Let g be the function defined by $g(x)=\int_{1}^{x} f(t) d t$ on the open interval $(0,4)$. For $0<x<4$, find all values of x at which g has a relative extremum. Determine whether g has a relative maximum or a relative minimum at each of these values. Justify your answer.

(d) For the function g defined in part (c), find all values of x, for $0<x<4$, at which the graph of g has a point of inflection. Justify your answer.

x	0	$0<x<1$	1	$1<x<2$	2	$2<x<3$	3	$3<x<4$
$f(x)$	-1	Negative	0	Positive	2	Positive	0	Negative
$f^{\prime}(x)$	4	Positive	0	Positive	DNE	Negative	-3	Negative
$f^{\prime \prime}(x)$	-2	Negative	0	Positive	DNE	Negative	0	Positive

Let f be a function that is continuous on the interval $[0,4)$. The function f is twice differentiable except at $x=2$. The function f and its derivatives have the properties indicated in the table above, where DNE indicates that the derivatives of f do not exist at $x=2$.
(a) For $0<x<4$, find all values of x at which f has a relative extremum. Determine whether f has a relative maximum or a relative minimum at each of these values. Justify your answer.
(b) On the axes provided, sketch the graph of a function that has all the characteristics of f. (Note: Use the axes provided in the pink test booklet.)
(c) Let g be the function defined by $g(x)=\int_{1}^{x} f(t) d t$ on the open interval $(0,4)$. For
$0<x<4$, find all values of x at which g has a relative extremum. Determine whether g has a relative maximum or a relative minimum at each of these values. Justify your answer.

(d) For the function g defined in part (c), find all values of x, for $0<x<4$, at which the graph of g has a point of inflection. Justify your answer.
(a) f has a relative maximum at $x=2$ because f^{\prime} changes from positive to negative at $x=2$.
(b)

$2:\left\{\begin{array}{l}1: \text { relative extremum at } x=2 \\ 1: \text { relative maximum with justification }\end{array}\right.$
$2:\left\{\begin{array}{r}1: \begin{array}{l}\text { points at } x=0,1,2,3 \\ \text { and behavior at }(2,2)\end{array}\end{array}\right.$
: 1 : appropriate increasing/decreasing
(c) $\quad g^{\prime}(x)=f(x)=0$ at $x=1,3$.
g^{\prime} changes from negative to positive at $x=1$ so g has a relative minimum at $x=1$. g^{\prime} changes from positive to negative at $x=3$ so g has a relative maximum at $x=3$.
(d) The graph of g has a point of inflection at $x=2$ because $g^{\prime \prime}=f^{\prime}$ changes sign at $x=2$.
$3:\left\{\begin{array}{l}1: g^{\prime}(x)=f(x) \\ 1: \text { critical points } \\ 1: \text { answer with justification }\end{array}\right.$
$2:\left\{\begin{array}{l}1: x=2 \\ 1: \text { answer with justification }\end{array}\right.$

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	6	4	2	5
2	9	2	3	1
3	10	-4	4	2
4	-1	3	6	7

The functions f and g are differentiable for all real numbers, and g is strictly increasing. The table above gives values of the functions and their first derivatives at selected values of x. The function h is given by $h(x)=f(g(x))-6$.
(a) Explain why there must be a value r for $1<r<3$ such that $h(r)=-5$.
(b) Explain why there must be a value c for $1<c<3$ such that $h^{\prime}(c)=-5$.
(c) Let w be the function given by $w(x)=\int_{1}^{g(x)} f(t) d t$. Find the value of $w^{\prime}(3)$.
(d) If g^{-1} is the inverse function of g, write an equation for the line tangent to the graph of $y=g^{-1}(x)$ at $x=2$.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	6	4	2	5
2	9	2	3	1
3	10	-4	4	2
4	-1	3	6	7

The functions f and g are differentiable for all real numbers, and g is strictly increasing. The table above gives values of the functions and their first derivatives at selected values of x. The function h is given by $h(x)=f(g(x))-6$.
(a) Explain why there must be a value r for $1<r<3$ such that $h(r)=-5$.
(b) Explain why there must be a value c for $1<c<3$ such that $h^{\prime}(c)=-5$.
(c) Let w be the function given by $w(x)=\int_{1}^{g(x)} f(t) d t$. Find the value of $w^{\prime}(3)$.
(d) If g^{-1} is the inverse function of g, write an equation for the line tangent to the graph of $y=g^{-1}(x)$ at $x=2$.
(a) $h(1)=f(g(1))-6=f(2)-6=9-6=3$ $h(3)=f(g(3))-6=f(4)-6=-1-6=-7$
Since $h(3)<-5<h(1)$ and h is continuous, by the Intermediate Value Theorem, there exists a value r, $1<r<3$, such that $h(r)=-5$.
(b) $\frac{h(3)-h(1)}{3-1}=\frac{-7-3}{3-1}=-5$

Since h is continuous and differentiable, by the
Mean Value Theorem, there exists a value c,
$1<c<3$, such that $h^{\prime}(c)=-5$.
(c) $w^{\prime}(3)=f(g(3)) \cdot g^{\prime}(3)=f(4) \cdot 2=-2$
(d) $g(1)=2$, so $g^{-1}(2)=1$.
$\left(g^{-1}\right)^{\prime}(2)=\frac{1}{g^{\prime}\left(g^{-1}(2)\right)}=\frac{1}{g^{\prime}(1)}=\frac{1}{5}$
An equation of the tangent line is $y-1=\frac{1}{5}(x-2)$.
$2:\left\{\begin{array}{l}1: h(1) \text { and } h(3) \\ 1: \text { conclusion, using IVT }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \frac{h(3)-h(1)}{3-1} \\ 1: \text { conclusion, using MVT }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { apply chain rule } \\ 1: \text { answer }\end{array}\right.$
$3:\left\{\begin{array}{l}1: g^{-1}(2) \\ 1:\left(g^{-1}\right)^{\prime}(2) \\ 1: \text { tangent line equation }\end{array}\right.$

Let f be a function that is even and continuous on the closed interval $[-3,3]$. The function f and its derivatives have the properties indicated in the table below.

\boldsymbol{x}	0	$0<\boldsymbol{x}<1$	1	$1<\boldsymbol{x}<2$	2	$2<\boldsymbol{x}<3$
$\boldsymbol{f}(\boldsymbol{x})$	1	Positive	0	Negative	-1	Negative
$\boldsymbol{f}^{\prime}(\boldsymbol{x})$	Undefined	Negative	0	Negative	Undefined	Positive
$\boldsymbol{f}^{\prime \prime}(\boldsymbol{x})$	Undefined	Positive	0	Negative	Undefined	Negative

(a) Find the x-coordinate of each point at which f attains an absolute maximum value or an absolute minimum value. For each x-coordinate you give, state whether f attains an absolute maximum or an absolute minimum.
(b) Find the x-coordinate of each point of inflection on the graph of f. Justify your answer.
(c) In the $x y$-plane provided below, sketch the graph of a function with all the given characteristics of f.

Let f be a function that is even and continuous on the closed interval $[-3,3]$. The function f and its derivatives have the properties indicated in the table below.

\boldsymbol{x}	0	$0<\boldsymbol{x}<1$	1	$1<\boldsymbol{x}<2$	2	$2<\boldsymbol{x}<3$
$\boldsymbol{f}(\boldsymbol{x})$	1	Positive	0	Negative	-1	Negative
$\boldsymbol{f}^{\prime}(\boldsymbol{x})$	Undefined	Negative	0	Negative	Undefined	Positive
$\boldsymbol{f}^{\prime \prime}(\boldsymbol{x})$	Undefined	Positive	0	Negative	Undefined	Negative

(a) Find the x-coordinate of each point at which f attains an absolute maximum value or an absolute minimum value. For each x-coordinate you give, state whether f attains an absolute maximum or an absolute minimum.
(b) Find the x-coordinate of each point of inflection on the graph of f. Justify your answer.
(c) In the $x y$-plane provided below, sketch the graph of a function with all the given characteristics of f.

(a) Absolute maximum at $x=0$

Absolute minimum at $x= \pm 2$
(b) Points of inflection at $x= \pm 1$ because the sign of $f^{\prime \prime}(x)$ changes at $x=1$ and f is even
(c)

x	-1.5	-1.0	-0.5	0	0.5	1.0	1.5
$f(x)$	-1	-4	-6	-7	-6	-4	-1
$f^{\prime}(x)$	-7	-5	-3	0	3	5	7

Let f be a function that is differentiable for all real numbers. The table above gives the values of f and its derivative f^{\prime} for selected points x in the closed interval $-1.5 \leq x \leq 1.5$. The second derivative of f has the property that $f^{\prime \prime}(x)>0$ for $-1.5 \leq x \leq 1.5$.
(a) Evaluate $\int_{0}^{1.5}\left(3 f^{\prime}(x)+4\right) d x$. Show the work that leads to your answer.
(b) Write an equation of the line tangent to the graph of f at the point where $x=1$. Use this line to approximate the value of $f(1.2)$. Is this approximation greater than or less than the actual value of $f(1.2)$? Give a reason for your answer.
(c) Find a positive real number r having the property that there must exist a value c with $0<c<0.5$ and $f^{\prime \prime}(c)=r$. Give a reason for your answer.
(d) Let g be the function given by $g(x)= \begin{cases}2 x^{2}-x-7 & \text { for } x<0 \\ 2 x^{2}+x-7 & \text { for } x \geq 0 .\end{cases}$

The graph of g passes through each of the points $(x, f(x))$ given in the table above. Is it possible that f and g are the same function? Give a reason for your answer.

x	-1.5	-1.0	-0.5	0	0.5	1.0	1.5
$f(x)$	-1	-4	-6	-7	-6	-4	-1
$f^{\prime}(x)$	-7	-5	-3	0	3	5	7

Let f be a function that is differentiable for all real numbers. The table above gives the values of f and its derivative f^{\prime} for selected points x in the closed interval $-1.5 \leq x \leq 1.5$. The second derivative of f has the property that $f^{\prime \prime}(x)>0$ for $-1.5 \leq x \leq 1.5$.
(a) Evaluate $\int_{0}^{1.5}\left(3 f^{\prime}(x)+4\right) d x$. Show the work that leads to your answer.
(b) Write an equation of the line tangent to the graph of f at the point where $x=1$. Use this line to approximate the value of $f(1.2)$. Is this approximation greater than or less than the actual value of $f(1.2)$?
Give a reason for your answer.
(c) Find a positive real number r having the property that there must exist a value c with $0<c<0.5$ and $f^{\prime \prime}(c)=r$. Give a reason for your answer.
(d) Let g be the function given by $g(x)= \begin{cases}2 x^{2}-x-7 & \text { for } x<0 \\ 2 x^{2}+x-7 & \text { for } x \geq 0 .\end{cases}$

The graph of g passes through each of the points $(x, f(x))$ given in the table above. Is it possible that f and g are the same function? Give a reason for your answer.
(a) $\int_{0}^{1.5}\left(3 f^{\prime}(x)+4\right) d x=3 \int_{0}^{1.5} f^{\prime}(x) d x+\int_{0}^{1.5} 4 d x$

$$
=3 f(x)+\left.4 x\right|_{0} ^{1.5}=3(-1-(-7))+4(1.5)=24
$$

(b) $\quad y=5(x-1)-4$
$f(1.2) \approx 5(0.2)-4=-3$
The approximation is less than $f(1.2)$ because the graph of f is concave up on the interval
$1<x<1.2$.
(c) By the Mean Value Theorem there is a c with $0<c<0.5$ such that
$f^{\prime \prime}(c)=\frac{f^{\prime}(0.5)-f^{\prime}(0)}{0.5-0}=\frac{3-0}{0.5}=6=r$
(d) $\lim _{x \rightarrow 0^{-}} g^{\prime}(x)=\lim _{x \rightarrow 0^{-}}(4 x-1)=-1$
$\lim _{x \rightarrow 0^{+}} g^{\prime}(x)=\lim _{x \rightarrow 0^{+}}(4 x+1)=+1$
Thus g^{\prime} is not continuous at $x=0$, but f^{\prime} is continuous at $x=0$, so $f \neq g$.

OR

$g^{\prime \prime}(x)=4$ for all $x \neq 0$, but it was shown in part
(c) that $f^{\prime \prime}(c)=6$ for some $c \neq 0$, so $f \neq g$.

