\qquad Per: \qquad Seat: \qquad

Topic 3: Analyzing Graphs of \mathbf{f}^{\prime}

The derivative of a function f is defined by

$$
f^{\prime}(x)=\left\{\begin{array}{ll}
g(x) & \text { for }-4 \leq x \leq 0 \\
5 e^{-x / 3}-3 & \text { for } 0<x \leq 4
\end{array}\right. \text {. }
$$

The graph of the continuous function f^{\prime}, shown in the figure above, has x-intercepts at $x=-2$ and $x=3 \ln \left(\frac{5}{3}\right)$. The graph of g on $-4 \leq x \leq 0$ is a semicircle, and $f(0)=5$.

(a) For $-4<x<4$, find all values of x at which the graph of f has a point of inflection. Justify your answer.
(b) Find $f(-4)$ and $f(4)$.
(c) For $-4 \leq x \leq 4$, find the value of x at which f has an absolute maximum. Justify your answer.

The derivative of a function f is defined by

$$
f^{\prime}(x)=\left\{\begin{array}{lll}
g(x) & \text { for } & -4 \leq x \leq 0 \\
5 e^{-x / 3}-3 & \text { for } & 0<x \leq 4
\end{array}\right.
$$

The graph of the continuous function f^{\prime}, shown in the figure above, has x-intercepts at $x=-2$ and $x=3 \ln \left(\frac{5}{3}\right)$. The graph of g on $-4 \leq x \leq 0$ is a semicircle, and $f(0)=5$.

(a) For $-4<x<4$, find all values of x at which the graph of f has a point of inflection. Justify your answer.
(b) Find $f(-4)$ and $f(4)$.
(c) For $-4 \leq x \leq 4$, find the value of x at which f has an absolute maximum. Justify your answer.

Let f be a twice-differentiable function defined on the interval $-1.2<x<3.2$ with $f(1)=2$. The graph of f^{\prime}, the derivative of f, is shown above. The graph of f^{\prime} crosses the x-axis at $x=-1$ and $x=3$ and has a horizontal tangent at $x=2$. Let g be the function given by $g(x)=e^{f(x)}$.
(a) Write an equation for the line tangent to the graph of g at $x=1$.
(b) For $-1.2<x<3.2$, find all values of x at which g has a
 local maximum. Justify your answer.
(c) The second derivative of g is $g^{\prime \prime}(x)=e^{f(x)}\left[\left(f^{\prime}(x)\right)^{2}+f^{\prime \prime}(x)\right]$. Is $g^{\prime \prime}(-1)$ positive, negative, or zero? Justify your answer.
(d) Find the average rate of change of g^{\prime}, the derivative of g, over the interval $[1,3]$.

The function g is defined and differentiable on the closed interval [-7,5] and satisfies $g(0)=5$. The graph of $y=g^{\prime}(x)$, the derivative of g, consists of a semicircle and three line segments, as shown in the figure above.
(a) Find $g(3)$ and $g(-2)$.
(b) Find the x-coordinate of each point of inflection of the graph of $y=g(x)$ on the interval $-7<x<5$. Explain your reasoning.
(c) The function h is defined by $h(x)=g(x)-\frac{1}{2} x^{2}$. Find the x-coordinate of each critical point of h, where $-7<x<5$, and classify each critical point as the location of a relative minimum, relative maximum, or neither a minimum nor a maximum. Explain your reasoning.

The figure above shows the graph of f^{\prime}, the derivative of a twice-differentiable function f, on the closed interval $0 \leq x \leq 8$. The graph of f^{\prime} has horizontal tangent lines at $x=1, x=3$, and $x=5$. The areas of the regions between the graph of f^{\prime} and the x-axis are labeled in the figure. The function f is defined for all real numbers and satisfies $f(8)=4$.
(a) Find all values of x on the open interval $0<x<8$ for which the function f has a local minimum. Justify your answer.
(b) Determine the absolute minimum value of f on the
 closed interval $0 \leq x \leq 8$. Justify your answer.
(c) On what open intervals contained in $0<x<8$ is the graph of f both concave down and increasing? Explain your reasoning.
(d) The function g is defined by $g(x)=(f(x))^{3}$. If $f(3)=-\frac{5}{2}$, find the slope of the line tangent to the graph of g at $x=3$.

The figure above shows the graph of f^{\prime}, the derivative of a twice-differentiable function f, on the interval $[-3,4]$. The graph of f^{t} has horizontal tangents at $x=-1, x=1$, and $x=3$. The areas of the regions bounded by the x-axis and the graph of f^{\prime} on the intervals $[-2,1]$ and $[1,4]$ are 9 and 12 , respectively.
(a) Find all x-coordinates at which f has a relative maximum. Give a reason for your answer.
(b) On what open intervals contained in $-3<x<4$ is the graph of f both concave down and decreasing? Give a
 reason for your answer.
(c) Find the x-coordinates of all points of inflection for the graph of f. Give a reason for your answer.
(d) Given that $f(1)=3$, write an expression for $f(x)$ that involves an integral. Find $f(4)$ and $f(-2)$.

Consider a differentiable function f having domain all positive real numbers, and for which it is known that $f^{\prime}(x)=(4-x) x^{-3}$ for $x>0$.
(a) Find the x-coordinate of the critical point of f. Determine whether the point is a relative maximum, a relative minimum, or neither for the function f. Justify your answer.
(b) Find all intervals on which the graph of f is concave down. Justify your answer.
(c) Given that $f(1)=2$, determine the function f.

Graph of f^{\prime}

The function f is differentiable on the closed interval $[-6,5]$ and satisfies $f(-2)=7$. The graph of f^{\prime}, the derivative of f, consists of a semicircle and three line segments, as shown in the figure above.
(a) Find the values of $f(-6)$ and $f(5)$.
(b) On what intervals is f increasing? Justify your answer.
(c) Find the absolute minimum value of f on the closed interval $[-6,5]$. Justify your answer.
(d) For each of $f^{\prime \prime}(-5)$ and $f^{\prime \prime}(3)$, find the value or explain why it does not exist.

Let f be the function defined by $f(x)=e^{x} \cos x$.
(a) Find the average rate of change of f on the interval $0 \leq x \leq \pi$.
(b) What is the slope of the line tangent to the graph of f at $x=\frac{3 \pi}{2}$?
(c) Find the absolute minimum value of f on the interval $0 \leq x \leq 2 \pi$. Justify your answer.
(d) Let g be a differentiable function such that $g\left(\frac{\pi}{2}\right)=0$. The graph of g^{\prime}, the derivative of g, is shown below. Find the value of $\lim _{x \rightarrow \pi / 2} \frac{f(x)}{g(x)}$ or state that it does not exist. Justify your answer.

Graph of g^{\prime}

The figure above shows the graph of f^{\prime}, the derivative of the function f, on the closed interval $-1 \leq x \leq 5$. The graph of f^{\prime} has horizontal tangent lines at $x=1$ and $x=3$. The function f is twice differentiable with $f(2)=6$.
(a) Find the x-coordinate of each of the points of inflection of the graph of f. Give a reason for your answer.
(b) At what value of x does f attain its absolute minimum value on the closed interval $-1 \leq x \leq 5$? At what value of x does f attain its absolute maximum value on the closed interval $-1 \leq x \leq 5$? Show the analysis that leads to your answers.

(c) Let g be the function defined by $g(x)=x f(x)$. Find an equation for the line tangent to the graph of g at $x=2$.

Let f be the function defined for $x \geq 0$ with $f(0)=5$ and f^{\prime}, the first derivative of f, given by $f^{\prime}(x)=e^{(-x / 4)} \sin \left(x^{2}\right)$. The graph of $y=f^{\prime}(x)$ is shown above.
(a) Use the graph of f^{\prime} to determine whether the graph of f is concave up, concave down, or neither on the interval $1.7<x<1.9$. Explain your reasoning.
(b) On the interval $0 \leq x \leq 3$, find the value of x at which f has an absolute maximum. Justify your answer.

(c) Write an equation for the line tangent to the graph of f at $x=2$.

A particle moves along the x-axis so that its velocity at time t, for $0 \leq t \leq 6$, is given by a differentiable function v whose graph is shown above. The velocity is 0 at $t=0, t=3$, and $t=5$, and the graph has horizontal tangents at $t=1$ and $t=4$. The areas of the regions bounded by the t-axis and the graph of v on the intervals $[0,3],[3,5]$, and $[5,6]$ are 8,3 , and 2 , respectively. At time $t=0$, the particle is at $x=-2$.
(a) For $0 \leq t \leq 6$, find both the time and the position of the particle when the particle is farthest to the left. Justify your answer.
(b) For how many values of t, where $0 \leq t \leq 6$, is the particle at $x=-8$? Explain your reasoning.
(c) On the interval $2<t<3$, is the speed of the particle increasing or decreasing? Give a reason for your answer.
(d) During what time intervals, if any, is the acceleration of the particle negative? Justify your answer.

Note: This is the graph of the derivative of f, not the graph of f.

The figure above shows the graph of f^{\prime}, the derivative of a function f. The domain of f is the set of all real numbers x such that $-10 \leq x \leq 10$.
(a) For what values of x does the graph of f have a horizontal tangent?
(b) For what values of x in the interval $(-10,10)$ does f have a relative maximum? Justify your answer.
(c) For value of x is the graph of f concave downward?

