AP FRQ Review - Mr. Rich AP Calculus AB

Name: \qquad Per: \qquad Seat: \qquad

Topic 2: Rates and Integrals (MVT, Riemann Sums, Tabular)

The rate at which people enter an auditorium for a rock concert is modeled by the function R given by $R(t)=1380 t^{2}-675 t^{3}$ for $0 \leq t \leq 2$ hours; $R(t)$ is measured in people per hour. No one is in the auditorium at time $t=0$, when the doors open. The doors close and the concert begins at time $t=2$.
(a) How many people are in the auditorium when the concert begins?
(b) Find the time when the rate at which people enter the auditorium is a maximum. Justify your answer.
(c) The total wait time for all the people in the auditorium is found by adding the time each person waits, starting at the time the person enters the auditorium and ending when the concert begins. The function w models the total wait time for all the people who enter the auditorium before time t. The derivative of w is given by $w^{\prime}(t)=(2-t) R(t)$. Find $w(2)-w(1)$, the total wait time for those who enter the auditorium after time $t=1$.
(d) On average, how long does a person wait in the auditorium for the concert to begin? Consider all people who enter the auditorium after the doors open, and use the model for total wait time from part (c).

A storm washed away sand from a beach, causing the edge of the water to get closer to a nearby road. The rate at which the distance between the road and the edge of the water was changing during the storm is modeled by $f(t)=\sqrt{t}+\cos t-3$ meters per hour, t hours after the storm began. The edge of the water was 35 meters from the road when the storm began, and the storm lasted 5 hours. The derivative of $f(t)$ is $f^{\prime}(t)=\frac{1}{2 \sqrt{t}}-\sin t$.
(a) What was the distance between the road and the edge of the water at the end of the storm?
(b) Using correct units, interpret the value $f^{\prime}(4)=1.007$ in terms of the distance between the road and the edge of the water.
(c) At what time during the 5 hours of the storm was the distance between the road and the edge of the water decreasing most rapidly? Justify your answer.
(d) After the storm, a machine pumped sand back onto the beach so that the distance between the road and the edge of the water was growing at a rate of $g(p)$ meters per day, where p is the number of days since pumping began. Write an equation involving an integral expression whose solution would give the number of days that sand must be pumped to restore the original distance between the road and the edge of the water.

Mighty Cable Company manufactures cable that sells for $\$ 120$ per meter. For a cable of fixed length, the cost of producing a portion of the cable varies with its distance from the beginning of the cable. Mighty reports that the cost to produce a portion of a cable that is x meters from the beginning of the cable is $6 \sqrt{x}$ dollars per meter. (Note: Profit is defined to be the difference between the amount of money received by the company for selling the cable and the company's cost of producing the cable.)
(a) Find Mighty's profit on the sale of a 25 -meter cable.
(b) Using correct units, explain the meaning of $\int_{25}^{30} 6 \sqrt{x} d x$ in the context of this problem.
(c) Write an expression, involving an integral, that represents Mighty's profit on the sale of a cable that is k meters long.
(d) Find the maximum profit that Mighty could earn on the sale of one cable. Justify your answer.

At a certain height, a tree trunk has a circular cross section. The radius $R(t)$ of that cross section grows at a rate modeled by the function

$$
\frac{d R}{d t}=\frac{1}{16}\left(3+\sin \left(t^{2}\right)\right) \text { centimeters per year }
$$

for $0 \leq t \leq 3$, where time t is measured in years. At time $t=0$, the radius is 6 centimeters. The area of the cross section at time t is denoted by $A(t)$.
(a) Write an expression, involving an integral, for the radius $R(t)$ for $0 \leq t \leq 3$. Use your expression to find $R(3)$.
(b) Find the rate at which the cross-sectional area $A(t)$ is increasing at time $t=3$ years. Indicate units of measure.
(c) Evaluate $\int_{0}^{3} A^{\prime}(t) d t$. Using appropriate units, interpret the meaning of that integral in terms of crosssectional area.

There is no snow on Janet's driveway when snow begins to fall at midnight. From midnight to 9 A.M., snow accumulates on the driveway at a rate modeled by $f(t)=7 t e^{\cos t}$ cubic feet per hour, where t is measured in hours since midnight. Janet starts removing snow at 6 A.M. $(t=6)$. The rate $g(t)$, in cubic feet per hour, at which Janet removes snow from the driveway at time t hours after midnight is modeled by

$$
g(t)= \begin{cases}0 & \text { for } 0 \leq t<6 \\ 125 & \text { for } 6 \leq t<7 \\ 108 & \text { for } 7 \leq t \leq 9\end{cases}
$$

(a) How many cubic feet of snow have accumulated on the driveway by 6 A.M.?
(b) Find the rate of change of the volume of snow on the driveway at 8 A.M.
(c) Let $h(t)$ represent the total amount of snow, in cubic feet, that Janet has removed from the driveway at time t hours after midnight. Express h as a piecewise-defined function with domain $0 \leq t \leq 9$.
(d) How many cubic feet of snow are on the driveway at 9 A.M.?

The function g is defined for $x>0$ with $g(1)=2, g^{\prime}(x)=\sin \left(x+\frac{1}{x}\right)$, and $g^{\prime \prime}(x)=\left(1-\frac{1}{x^{2}}\right) \cos \left(x+\frac{1}{x}\right)$.
(a) Find all values of x in the interval $0.12 \leq x \leq 1$ at which the graph of g has a horizontal tangent line.
(b) On what subintervals of ($0.12,1$), if any, is the graph of g concave down? Justify your answer.
(c) Write an equation for the line tangent to the graph of g at $x=0.3$.
(d) Does the line tangent to the graph of g at $x=0.3$ lie above or below the graph of g for $0.3<x<1$? Why?

A cylindrical can of radius 10 millimeters is used to measure rainfall in Stormville. The can is initially empty, and rain enters the can during a 60 -day period. The height of water in the can is modeled by the function S, where $S(t)$ is measured in millimeters and t is measured in days for $0 \leq t \leq 60$. The rate at which the height of the water is rising in the can is given by $S^{\prime}(t)=2 \sin (0.03 t)+1.5$.
(a) According to the model, what is the height of the water in the can at the end of the 60 -day period?
(b) According to the model, what is the average rate of change in the height of water in the can over the 60 -day period? Show the computations that lead to your answer. Indicate units of measure.
(c) Assuming no evaporation occurs, at what rate is the volume of water in the can changing at time $t=7$? Indicate units of measure.
(d) During the same 60-day period, rain on Monsoon Mountain accumulates in a can identical to the one in Stormville. The height of the water in the can on Monsoon Mountain is modeled by the function M, where $M(t)=\frac{1}{400}\left(3 t^{3}-30 t^{2}+330 t\right)$. The height $M(t)$ is measured in millimeters, and t is measured in days for $0 \leq t \leq 60$. Let $D(t)=M^{\prime}(t)-S^{\prime}(t)$. Apply the Intermediate Value Theorem to the function D on the interval $0 \leq t \leq 60$ to justify that there exists a time $t, 0<t<60$, at which the heights of water in the two cans are changing at the same rate.

A 12,000 -liter tank of water is filled to capacity. At time $t=0$, water begins to drain out of the tank at a rate modeled by $r(t)$, measured in liters per hour, where r is given by the piecewise-defined function

$$
r(t)= \begin{cases}\frac{600 t}{t+3} & \text { for } 0 \leq t \leq 5 \\ 1000 e^{-0.2 t} & \text { for } t>5\end{cases}
$$

(a) Is r continuous at $t=5$? Show the work that leads to your answer.
(b) Find the average rate at which water is draining from the tank between time $t=0$ and time $t=8$ hours.
(c) Find $r^{\prime}(3)$. Using correct units, explain the meaning of that value in the context of this problem.
(d) Write, but do not solve, an equation involving an integral to find the time A when the amount of water in the tank is 9000 liters.

On a certain workday, the rate, in tons per hour, at which unprocessed gravel arrives at a gravel processing plant is modeled by $G(t)=90+45 \cos \left(\frac{t^{2}}{18}\right)$, where t is measured in hours and $0 \leq t \leq 8$. At the beginning of the workday $(t=0)$, the plant has 500 tons of unprocessed gravel. During the hours of operation, $0 \leq t \leq 8$, the plant processes gravel at a constant rate of 100 tons per hour.
(a) Find $G^{\prime}(5)$. Using correct units, interpret your answer in the context of the problem.
(b) Find the total amount of unprocessed gravel that arrives at the plant during the hours of operation on this workday.
(c) Is the amount of unprocessed gravel at the plant increasing or decreasing at time $t=5$ hours? Show the work that leads to your answer.
(d) What is the maximum amount of unprocessed gravel at the plant during the hours of operation on this workday? Justify your answer.

The rate at which rainwater flows into a drainpipe is modeled by the function R, where $R(t)=20 \sin \left(\frac{t^{2}}{35}\right)$ cubic feet per hour, t is measured in hours, and $0 \leq t \leq 8$. The pipe is partially blocked, allowing water to drain out the other end of the pipe at a rate modeled by $D(t)=-0.04 t^{3}+0.4 t^{2}+0.96 t$ cubic feet per hour, for $0 \leq t \leq 8$. There are 30 cubic feet of water in the pipe at time $t=0$.
(a) How many cubic feet of rainwater flow into the pipe during the 8 -hour time interval $0 \leq t \leq 8$?
(b) Is the amount of water in the pipe increasing or decreasing at time $t=3$ hours? Give a reason for your answer.
(c) At what time $t, 0 \leq t \leq 8$, is the amount of water in the pipe at a minimum? Justify your answer.
(d) The pipe can hold 50 cubic feet of water before overflowing. For $t>8$, water continues to flow into and out of the pipe at the given rates until the pipe begins to overflow. Write, but do not solve, an equation involving one or more integrals that gives the time w when the pipe will begin to overflow.

x	2	3	5	8	13
$f(x)$	1	4	-2	3	6

Let f be a function that is twice differentiable for all real numbers. The table above gives values of f for selected points in the closed interval $2 \leq x \leq 13$.
(a) Estimate $f^{\prime}(4)$. Show the work that leads to your answer.
(b) Evaluate $\int_{2}^{13}\left(3-5 f^{\prime}(x)\right) d x$. Show the work that leads to your answer.
(c) Use a left Riemann sum with subintervals indicated by the data in the table to approximate $\int_{2}^{13} f(x) d x$. Show the work that leads to your answer.
(d) Suppose $f^{\prime}(5)=3$ and $f^{\prime \prime}(x)<0$ for all x in the closed interval $5 \leq x \leq 8$. Use the line tangent to the graph of f at $x=5$ to show that $f(7) \leq 4$. Use the secant line for the graph of f on $5 \leq x \leq 8$ to show that $f(7) \geq \frac{4}{3}$.

t (seconds)	0	8	20	25	32	40
$v(t)$ (meters per second)	3	5	-10	-8	-4	7

The velocity of a particle moving along the x-axis is modeled by a differentiable function v, where the position x is measured in meters, and time t is measured in seconds. Selected values of $v(t)$ are given in the table above. The particle is at position $x=7$ meters when $t=0$ seconds.
(a) Estimate the acceleration of the particle at $t=36$ seconds. Show the computations that lead to your answer. Indicate units of measure.
(b) Using correct units, explain the meaning of $\int_{20}^{40} v(t) d t$ in the context of this problem. Use a trapezoidal sum with the three subintervals indicated by the data in the table to approximate $\int_{20}^{40} v(t) d t$.
(c) For $0 \leq t \leq 40$, must the particle change direction in any of the subintervals indicated by the data in the table? If so, identify the subintervals and explain your reasoning. If not, explain why not.
(d) Suppose that the acceleration of the particle is positive for $0<t<8$ seconds. Explain why the position of the particle at $t=8$ seconds must be greater than $x=30$ meters.

t	0	2	4	6	8	10	12
$P(t)$	0	46	53	57	60	62	63

The figure above shows an aboveground swimming pool in the shape of a cylinder with a radius of 12 feet and a height of 4 feet. The pool contains 1000 cubic feet of water at time $t=0$. During the time interval $0 \leq t \leq 12$ hours, water is pumped into the pool at the rate $P(t)$ cubic feet per hour. The table above gives values of $P(t)$ for selected values of t. During the same time interval, water is Ieaking from the pool at the rate $R(t)$ cubic feet per hour, where $R(t)=25 e^{-0.05 t}$. (Note: The volume V of a cylinder with radius r and height h is given by $V=\pi r^{2} h$.)
(a) Use a midpoint Riemann sum with three subintervals of equal length to approximate the total amount of water that was pumped into the pool during the time interval $0 \leq t \leq 12$ hours. Show the computations that lead to your answer.
(b) Calculate the total amount of water that leaked out of the pool during the time interval $0 \leq t \leq 12$ hours.
(c) Use the results from parts (a) and (b) to approximate the volume of water in the pool at time $t=12$ hours. Round your answer to the nearest cubic foot.
(d) Find the rate at which the volume of water in the pool is increasing at time $t=8$ hours. How fast is the water level in the pool rising at $t=8$ hours? Indicate units of measure in both answers.

t (hours)	0	2	5	7	8
$E(t)$ (hundreds of entries)	0	4	13	21	23

A zoo sponsored a one-day contest to name a new baby elephant. Zoo visitors deposited entries in a special box between noon $(t=0)$ and 8 P.M. $(t=8)$. The number of entries in the box t hours after noon is modeled by a differentiable function E for $0 \leq t \leq 8$. Values of $E(t)$, in hundreds of entries, at various times t are shown in the table above.
(a) Use the data in the table to approximate the rate, in hundreds of entries per hour, at which entries were being deposited at time $t=6$. Show the computations that lead to your answer.
(b) Use a trapezoidal sum with the four subintervals given by the table to approximate the value of $\frac{1}{8} \int_{0}^{8} E(t) d t$. Using correct units, explain the meaning of $\frac{1}{8} \int_{0}^{8} E(t) d t$ in terms of the number of entries.
(c) At 8 P.M., volunteers began to process the entries. They processed the entries at a rate modeled by the function P, where $P(t)=t^{3}-30 t^{2}+298 t-976$ hundreds of entries per hour for $8 \leq t \leq 12$. According to the model, how many entries had not yet been processed by midnight $(t=12)$?
(d) According to the model from part (c), at what time were the entries being processed most quickly? Justify your answer.

t (minutes)	0	2	5	9	10
$H(t)$ (degrees Celsius)	66	60	52	44	43

As a pot of tea cools, the temperature of the tea is modeled by a differentiable function H for $0 \leq t \leq 10$, where time t is measured in minutes and temperature $H(t)$ is méasured in degrees Celsius. Values of $H(t)$ at selected values of time t are shown in the table above.
(a) Use the data. in the table to approximate the rate at which the temperature of the tea is changing at time $t=3.5$. Show the computations that leạd to your answer.
(b) Using correct units,, explain the meaning of $\frac{1}{10} \int_{0}^{10} H(t) d t$. in the context of this problèm. Use a trapezoidal sum with the four subintervals indicated by the table to estimate $\frac{1}{10} \int_{0}^{10} H(t) d t$.
(c) Evaluate $\int_{0}^{10} H^{\prime}(t) d t$. Using correct units, explain the meaning of the expression in the context of this problem.
(d) At time $t=0$, biscuits with temperature $100^{\circ} \mathrm{C}$ were removed from an oven. The temperature of the biscuits at time t is modeled by a differentiabie function B for which it is known that $B^{\prime}(t)=-13.84 e^{-0.173 t}$. Ưsing the given models, at time $t=10$, how much coolerare the biscuits than the tea?

t (seconds)	0	10	40	60
$B(t)$ (meters)	100	136	9	49
$v(t)$ (meters per second)	2.0	2.3	2.5	4.6

Ben rides a unicycle back and forth along a straight east-west track. The twice-differentiable function B models Ben's position on the track, measured in meters from the western end of the track, at time t, measured in seconds from the start of the ride. The table above gives values for $B(t)$ and Ben's velocity, $v(t)$, measured in meters per second, at selected times t.
(a) Use the data in the table to approximate Ben's acceleration at time $t=5$ seconds. Indicate units of measure.
(b) Using correct units, interpret the meaning of $\int_{0}^{60}|v(t)| d t$ in the context of this problem. Approximate $\int_{0}^{60}|v(t)| d t$ using a left Riemann sum with the subintervals indicated by the data in the table.
(c) For $40 \leq t \leq 60$, must there be a time t when Ben's velocity is 2 meters per second? Justify your answer.
(d) A light is directly above the western end of the track. Ben rides so that at time t, the distance $L(t)$ between Ben and the light satisfies $(L(t))^{2}=12^{2}+(B(t))^{2}$. At what rate is the distance between Ben and the light changing at time $t=40$?

t (minutes)	0	4	9	15	20
$W(t)$ (degrees Fahrenheit)	55.0	57.1	61.8	67.9	71.0

The temperature of water in a tub at time t is modeled by a strictly increasing, twice-differentiable function W, where $W(t)$ is measured in degrees Fahrenheit and t is measured in minutes. At time $t=0$, the temperature of the water is $55^{\circ} \mathrm{F}$. The water is heated for 30 minutes, beginning at time $t=0$. Values of $W(t)$ at selected times t for the first 20 minutes are given in the table above.
(a) Use the data in the table to estimate $W^{\prime}(12)$. Show the computations that lead to your answer. Using correct units, interpret the meaning of your answer in the context of this problem.
(b) Use the data in the table to evaluate $\int_{0}^{20} W^{\prime}(t) d t$. Using correct units, interpret the meaning of $\int_{0}^{20} W^{\prime}(t) d t$ in the context of this problem.
(c) For $0 \leq t \leq 20$, the average temperature of the water in the tub is $\frac{1}{20} \int_{0}^{20} W(t) d t$. Use a left Riemann sum with the four subintervals indicated by the data in the table to approximate $\frac{1}{20} \int_{0}^{20} W(t) d t$. Does this approximation overestimate or underestimate the average temperature of the water over these 20 minutes? Explain your reasoning.
(d) For $20 \leq t \leq 25$, the function W that models the water temperature has first derivative given by $W^{\prime}(t)=0.4 \sqrt{t} \cos (0.06 t)$. Based on the model, what is the temperature of the water at time $t=25$?

t (minutes)	0	1	2	3	4	5	6
$C(t)$ (ounces)	0	5.3	8.8	11.2	12.8	13.8	14.5

Hot water is dripping through a coffeemaker, filling a large cup with coffee. The amount of coffee in the cup at time $t, 0 \leq t \leq 6$, is given by a differentiable function C, where t is measured in minutes. Selected values of $C(t)$, measured in ounces, are given in the table above.
(a) Use the data in the table to approximate $C^{\prime}(3.5)$. Show the computations that lead to your answer, and indicate units of measure.
(b) Is there a time $t, 2 \leq t \leq 4$, at which $C^{\prime \prime}(t)=2$? Justify your answer.
(c) Use a midpoint sum with three subintervals of equal length indicated by the data in the table to approximate the value of $\frac{1}{6} \int_{0}^{6} C(t) d t$. Using correct units, explain the meaning of $\frac{1}{6} \int_{0}^{6} C(t) d t$ in the context of the problem.
(d) The amount of coffee in the cup, in ounces, is modeled by $B(t)=16-16 e^{-0.4 t}$. Using this model, find the rate at which the amount of coffee in the cup is changing when $t=5$.

t (minutes)	0	12	20	24	40
$v(t)$ (meters per minute)	0	200	240	-220	150

Johanna jogs along a straight path. For $0 \leq t \leq 40$, Johanna's velocity is given by a differentiable function ν. Selected values of $v(t)$, where t is measured in minutes and $v(t)$ is measured in meters per minute, are given in the table above.
(a) Use the data in the table to estimate the value of $v^{\prime}(16)$.
(b) Using correct units, explain the meaning of the definite integral $\int_{0}^{40}|v(t)| d t$ in the context of the problem. Approximate the value of $\int_{0}^{40}|v(t)| d t$ using a right Riemann sum with the four subintervals indicated in the table.
(c) Bob is riding his bicycle along the same path. For $0 \leq t \leq 10$, Bob's velocity is modeled by $B(t)=t^{3}-6 t^{2}+300$, where t is measured in minutes and $B(t)$ is measured in meters per minute.

Find Bob's acceleration at time $t=5$.
(d) Based on the model B from part (c), find Bob's average velocity during the interval $0 \leq t \leq 10$.

t (hours)	0	1	3	6	8
$R(t)$ (liters / hour)	1340	1190	950	740	700

Water is pumped into a tank at a rate modeled by $W(t)=2000 e^{-r^{2} / 20}$ liters per hour for $0 \leq t \leq 8$, where t is measured in hours. Water is removed from the tank at a rate modeled by $R(t)$ liters per hour. where R is differentiable and decreasing on $0 \leq t \leq \mathrm{S}$. Selected values of $R(t)$ are shown in the table above. At time $t=0$. there are 50,000 liters of waler in the tank.
(a) Estimate $R^{\prime}(2)$. Show the work that leads to your answer. Indicate units of mensure.
(b) Use a left Riemann stm with the four subintervals indicated by the table to estimate the tolal amount of water removed from the tank during the 8 hours. Is this an overestimate or an underestimate of the total amount of water removed? Give a reason for your answer.
(c) Use your answer from part (b) to find an estimate of the total amount of water in the tank, to the nearest liter, at the end or 8 hours.
(d) For $0 \leq t \leq 8$, is there a time t when the rate at which water is pumped into the tank is the same as the rate at which water is removed from the tank? Explain why or why not.

h (feet)	0	2	5	10
$A(h)$ (square feet)	50.3	14.4	6.5	2.9

A tank has a height of 10 feet. The area of the horizontal cross section of the tank at height h feet is given by the function A, where $A(h)$ is measured in square feet. The function A is continuous and decreases as h increases. Selected values for $A(h)$ are given in the table above.
(a) Use a left Riemann sum with the three subintervals indicated by the data in the table to approximate the volume of the tank. Indicate units of measure.
(b) Does the approximation in part (a) overestimate or underestimate the volume of the tank? Explain your reasoning.
(c) The area, in square feet, of the horizontal cross section at height h feet is modeled by the function f given by $f(h)=\frac{50.3}{e^{0.2 h}+h}$. Based on this model, find the volume of the tank. Indicate units of measure.
(d) Water is pumped into the tank. When the height of the water is 5 feet, the height is increasing at the rate of 0.26 foot per minute. Using the model from part (c), find the rate at which the volume of water is changing with respect to time when the height of the water is 5 feet. Indicate units of measure.

Fish enter a lake at a rate modeled by the function E given by $E(t)=20+15 \sin \left(\frac{\pi t}{6}\right)$. Fish leave the lake at a rate modeled by the function L given by $L(t)=4+2^{0.1 t^{2}}$. Both $E(t)$ and $L(t)$ are measured in fish per hour, and t is measured in hours since midnight $(t=0)$.
(a) How many fish enter the lake over the 5 -hour period from midnight $(t=0)$ to 5 A.M. $(t=5)$? Give your answer to the nearest whole number.
(b) What is the average number of fish that leave the lake per hour over the 5-hour period from midnight $(t=0)$ to 5 A.M. $(t=5)$?
(c) At what time t, for $0 \leq t \leq 8$, is the greatest number of fish in the lake? Justify your answer.
(d) Is the rate of change in the number of fish in the lake increasing or decreasing at 5 A.M. $(t=5)$? Explain your reasoning.

