AP FRQ Review - Mr. Rich

Name: \qquad Per: \qquad Seat: \qquad

AP Calculus AB

Topic 1: Area and Volume

Let R be the region in the first quadrant enclosed by the graphs of $y=2 x$ and $y=x^{2}$, as shown in the figure above.
(a) Find the area of R.
(b) The region R is the base of a solid. For this solid, at each x the cross section perpendicular to the x-axis has area $A(x)=\sin \left(\frac{\pi}{2} x\right)$. Find the volume of the solid.
(c) Another solid has the same base R. For this solid, the cross sections perpendicular to the y-axis are squares. Write, but do not evaluate, an integral expression for the volume of the solid.

Let R be the region bounded by the graphs of $y=\sqrt{x}$ and $y=\frac{x}{2}$, as shown in the figure above.
(a) Find the area of R.
(b) The region R is the base of a solid. For this solid, the cross sections perpendicular to the x-axis are squares. Find the volume of this solid.
(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is rotated about
 the horizontal line $y=2$.

Let R be the region in the first quadrant bounded by the graph of $y=2 \sqrt{x}$, the horizontal line $y=6$, and the y-axis, as shown in the figure above.
(a) Find the area of R.
(b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line $y=7$.
(c) Region R is the base of a solid. For each y, where $0 \leq y \leq 6$, the cross section of the solid taken perpendicular to the y-axis is a rectangle whose height is 3 times the length of its base in region R. Write, but do not evaluate, an integral expression that gives the volume of the solid.

In the figure above, R is the shaded region in the first quadrant bounded by the graph of $y=4 \ln (3-x)$, the horizontal line $y=6$, and the vertical line $x=2$.
(a) Find the area of R.
(b) Find the volume of the solid generated when R is revolved about the horizontal line $y=8$.
(c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of the solid.

Let R be the region in the first quadrant enclosed by the graphs of $f(x)=8 x^{3}$ and $g(x)=\sin (\pi x)$, as shown in the figure above.
(a) Write an equation for the line tangent to the graph of f at $x=\frac{1}{2}$.
(b) Find the area of R.
(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is rotated about the horizontal line $y=1$.

The functions f and g are given by $f(x)=\sqrt{x}$ and $g(x)=6-x$. Let R be the region bounded by the x-axis and the graphs of f and g, as shown in the figure above.
(a) Find the area of R.
(b) The region R is the base of a solid. For each y, where $0 \leq y \leq 2$, the cross section of the solid taken perpendicular to
 the y-axis is a rectangle whose base lies in R and whose height is $2 y$. Write, but do not evaluate, an integral expression that gives the volume of the solid.
(c) There is a point P on the graph of f at which the line tangent to the graph of f is perpendicular to the graph of g. Find the coordinates of point P.

Let R be the region in the first quadrant bounded by the x-axis and the graphs of $y=\ln x$ and $y=5-x$, as shown in the figure above.
(a) Find the area of R.
(b) Region R is the base of a solid. For the solid, each cross section perpendicular to the x-axis is a square. Write, but do not evaluate, an
 expression involving one or more integrals that gives the volume of the solid.
(c) The horizontal line $y=k$ divides R into two regions of equal area. Write, but do not solve, an equation involving one or more integrals whose solution gives the value of k.

Let $f(x)=2 x^{2}-6 x+4$ and $g(x)=4 \cos \left(\frac{1}{4} \pi x\right)$. Let R be the region bounded by the graphs of f and g, as shown in the figure above.
(a) Find the area of R.
(b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line $y=4$.

(c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Write, but do not evaluate, an integral expression that gives the volume of the solid.

Let R be the region enclosed by the graph of $f(x)=x^{4}-2.3 x^{3}+4$ and the horizontal line $y=4$, as shown in the figure above.
(a) Find the volume of the solid generated when R is rotated about the horizontal line $y=-2$.
(b) Region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is an isosceles right triangle with a leg in R. Find the volume of the solid.
(c) The vertical line $x=k$ divides R into two regions with equal areas. Write, but do not solve, an equation involving integral expressions whose solution gives the value k.

Let f and g be the functions defined by $f(x)=1+x+e^{x^{2}-2 x}$ and $g(x)=x^{4}-6.5 x^{2}+6 x+2$. Let R and S be the two regions enclosed by the graphs of f and g shown in the figure above.
(a) Find the sum of the areas of regions R and S.
(b) Region S is the base of a solid whose cross sections perpendicular to the x-axis are squares. Find the volume of the solid.
(c) Let h be the vertical distance between the graphs of f and g in region S. Find the rate at which h changes with respect to x when $x=1.8$.

The inside of a funnel of height 10 inches has circular cross sections, as shown in the figure above. At height h, the radius of the funnel is given by $r=\frac{1}{20}\left(3+h^{2}\right)$, where $0 \leq h \leq 10$. The units of r and h are inches.
(a) Find the average value of the radius of the funnel.
(b) Find the volume of the fumnel.
(c) The funnel contains liquid that is draining from the bottom. At the instant when the height of the liquid is $h=3$ inches, the radius of the surface of the liquid is decreasing at a rate of $\frac{1}{5}$ inch per second. At this instant, what is the rate of change of the height of the liquid with respect to time?

Let R be the region enclosed by the graphs of $g(x)=-2+3 \cos \left(\frac{\pi}{2} x\right)$ and $h(x)=6-2(x-1)^{2}$, the y-axis, and the vertical line $x=2$, as shown in the figure above.
(a) Find the area of R.
(b) Region R is the base of a solid. For the solid, at each x the cross section perpendicular to the x-axis has area $A(x)=\frac{1}{x+3}$. Find the volume of the solid.
(c) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line $y=6$.

