AP FRQ Review - Mr. Rich

Name:______ Per:____ Seat:_

AP Calculus AB

Topic 8: Particle Motion

Two particles move along the x-axis. For $0 \le t \le 6$, the position of particle P at time t is given by

 $p(t) = 2\cos\left(\frac{\pi}{4}t\right)$, while the position of particle R at time t is given by $r(t) = t^3 - 6t^2 + 9t + 3$.

- (a) For $0 \le t \le 6$, find all times t during which particle R is moving to the right.
- (b) For $0 \le t \le 6$, find all times t during which the two particles travel in opposite directions.
- (c) Find the acceleration of particle P at time t = 3. Is particle P speeding up, slowing down, or doing neither at time t = 3? Explain your reasoning.
- (d) Write, but do not evaluate, an expression for the average distance between the two particles on the interval $1 \le t \le 3$.

Two particles move along the x-axis. For $0 \le t \le 6$, the position of particle P at time t is given by

$$p(t) = 2\cos(\frac{\pi}{4}t)$$
, while the position of particle R at time t is given by $r(t) = t^3 - 6t^2 + 9t + 3$.

- (a) For 0 ≤ t ≤ 6, find all times t during which particle R is moving to the right.
- (b) For $0 \le t \le 6$, find all times t during which the two particles travel in opposite directions.
- (c) Find the acceleration of particle P at time t = 3. Is particle P speeding up, slowing down, or doing neither at time t = 3? Explain your reasoning.
- (d) Write, but do not evaluate, an expression for the average distance between the two particles on the interval $1 \le t \le 3$.

(a)
$$r'(t) = 3t^2 - 12t + 9 = 3(t - 1)(t - 3)$$

 $r'(t) = 0$ when $t = 1$ and $t = 3$
 $r'(t) > 0$ for $0 < t < 1$ and $3 < t < 6$
 $r'(t) < 0$ for $1 < t < 3$

$$2: \begin{cases} 1: r'(t) \\ 1: \text{answer} \end{cases}$$

Therefore R is moving to the right for 0 < t < 1 and 3 < t < 6.

(b)
$$p'(t) = -2 \cdot \frac{\pi}{4} \sin\left(\frac{\pi}{4}t\right)$$
$$p'(t) = 0 \text{ when } t = 0 \text{ and } t = 4$$
$$p'(t) < 0 \text{ for } 0 < t < 4$$

p'(t) > 0 for 4 < t < 6

$$3: \begin{cases} 1: p'(t) \\ 1: \text{sign analysis for } p'(t) \\ 1: \text{answer} \end{cases}$$

Therefore the particles travel in opposite directions for 0 < t < 1 and 3 < t < 4.

(c)
$$p''(t) = -2 \cdot \frac{\pi}{4} \cdot \frac{\pi}{4} \cos\left(\frac{\pi}{4}t\right)$$
$$p''(3) = -2\left(\frac{\pi}{4}\right)^2 \cos\left(\frac{3\pi}{4}\right) = \frac{\pi^2}{8} \cdot \frac{\sqrt{2}}{2} > 0$$
$$p'(3) < 0$$

$$2: \begin{cases} 1: p''(3) \\ 1: \text{answer with reason} \end{cases}$$

Therefore particle P is slowing down at time t = 3.

(d)
$$\frac{1}{2} \int_{1}^{3} |p(t) - r(t)| dt$$

$$2: \left\{ \begin{array}{l} 1: integrand \\ 1: limits \ and \ constant \end{array} \right.$$

For $0 \le t \le 6$, a particle is moving along the x-axis. The particle's position, x(t), is not explicitly given. The velocity of the particle is given by $v(t) = 2\sin(e^{t/4}) + 1$. The acceleration of the particle is given by $a(t) = \frac{1}{2}e^{t/4}\cos(e^{t/4})$ and x(0) = 2.

- (a) Is the speed of the particle increasing or decreasing at time t = 5.5? Give a reason for your answer.
- (b) Find the average velocity of the particle for the time period $0 \le t \le 6$.
- (c) Find the total distance traveled by the particle from time t = 0 to t = 6.
- (d) For $0 \le t \le 6$, the particle changes direction exactly once. Find the position of the particle at that time.

For $0 \le t \le 6$, a particle is moving along the x-axis. The particle's position, x(t), is not explicitly given. The velocity of the particle is given by $v(t) = 2\sin(e^{t/4}) + 1$. The acceleration of the particle is given by

$$a(t) = \frac{1}{2}e^{t/4}\cos(e^{t/4})$$
 and $x(0) = 2$.

- (a) Is the speed of the particle increasing or decreasing at time t = 5.5? Give a reason for your answer.
- (b) Find the average velocity of the particle for the time period $0 \le t \le 6$.
- (c) Find the total distance traveled by the particle from time t = 0 to t = 6.
- (d) For $0 \le t \le 6$, the particle changes direction exactly once. Find the position of the particle at that time.
- (a) v(5.5) = -0.45337, a(5.5) = -1.35851

The speed is increasing at time t = 5.5, because velocity and acceleration have the same sign.

2: conclusion with reason

(b) Average velocity = $\frac{1}{6} \int_0^6 v(t) dt = 1.949$

2: { 1 : integral

(c) Distance = $\int_0^6 |v(t)| dt = 12.573$

2: { l : integra

(d) v(t) = 0 when t = 5.19552. Let b = 5.19552. v(t) changes sign from positive to negative at time t = b. $x(b) = 2 + \int_0^b v(t) dt = 14.134$ or 14.135

3: $\begin{cases} 1 : \text{considers } v(t) = 0 \\ 1 : \text{integral} \\ 1 : \text{answer} \end{cases}$

For $0 \le t \le 12$, a particle moves along the x-axis. The velocity of the particle at time t is given by $v(t) = \cos\left(\frac{\pi}{6}t\right)$. The particle is at position x = -2 at time t = 0.

- (a) For $0 \le t \le 12$, when is the particle moving to the left?
- (b) Write, but do not evaluate, an integral expression that gives the total distance traveled by the particle from time t = 0 to time t = 6.
- (c) Find the acceleration of the particle at time t. Is the speed of the particle increasing, decreasing, or neither at time t = 4? Explain your reasoning.
- (d) Find the position of the particle at time t = 4.

For $0 \le t \le 12$, a particle moves along the x-axis. The velocity of the particle at time t is given by

$$v(t) = \cos\left(\frac{\pi}{6}t\right)$$
. The particle is at position $x = -2$ at time $t = 0$.

- (a) For $0 \le t \le 12$, when is the particle moving to the left?
- (b) Write, but do not evaluate, an integral expression that gives the total distance traveled by the particle from time t = 0 to time t = 6.
- (c) Find the acceleration of the particle at time t. Is the speed of the particle increasing, decreasing, or neither at time t = 4? Explain your reasoning.
- (d) Find the position of the particle at time t = 4.

(a)
$$v(t) = \cos\left(\frac{\pi}{6}t\right) = 0 \implies t = 3, 9$$

The particle is moving to the left when v(t) < 0. This occurs when 3 < t < 9. $2: \begin{cases} 1: \text{considers } \nu(t) = 0 \\ 1: \text{interval} \end{cases}$

(b)
$$\int_0^6 |v(t)| dt$$

1: answer

(c)
$$a(t) = -\frac{\pi}{6} \sin\left(\frac{\pi}{6}t\right)$$

$$a(4) = -\frac{\pi}{6} \sin\left(\frac{2\pi}{3}\right) = -\frac{\sqrt{3}\pi}{12} < 0$$

 $3: \begin{cases} 1: a(t) \\ 2: conclusion \end{cases}$

$$v(4) = \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2} < 0$$

The speed is increasing at time t = 4, because velocity and acceleration have the same sign.

(d)
$$x(4) = -2 + \int_0^4 \cos\left(\frac{\pi}{6}t\right) dt$$
$$= -2 + \left[\frac{6}{\pi}\sin\left(\frac{\pi}{6}t\right)\right]_0^4$$
$$= -2 + \frac{6}{\pi}\left[\sin\left(\frac{2\pi}{3}\right) - 0\right]$$
$$= -2 + \frac{6}{\pi} \cdot \frac{\sqrt{3}}{2} = -2 + \frac{3\sqrt{3}}{\pi}$$

3: { 1 : antiderivative 1 : uses initial condition

A particle moves along a straight line. For $0 \le t \le 5$, the velocity of the particle is given by $v(t) = -2 + \left(t^2 + 3t\right)^{6/5} - t^3$, and the position of the particle is given by s(t). It is known that s(0) = 10.

- (a) Find all values of t in the interval $2 \le t \le 4$ for which the speed of the particle is 2.
- (b) Write an expression involving an integral that gives the position s(t). Use this expression to find the position of the particle at time t = 5.
- (c) Find all times t in the interval $0 \le t \le 5$ at which the particle changes direction. Justify your answer.
- (d) Is the speed of the particle increasing or decreasing at time t = 4? Give a reason for your answer.

A particle moves along a straight line. For $0 \le t \le 5$, the velocity of the particle is given by $v(t) = -2 + (t^2 + 3t)^{6/5} - t^3$, and the position of the particle is given by s(t). It is known that s(0) = 10.

- (a) Find all values of t in the interval $2 \le t \le 4$ for which the speed of the particle is 2.
- (b) Write an expression involving an integral that gives the position s(t). Use this expression to find the position of the particle at time t = 5.
- (c) Find all times t in the interval $0 \le t \le 5$ at which the particle changes direction. Justify your answer.
- (d) Is the speed of the particle increasing or decreasing at time t = 4? Give a reason for your answer.
- (a) Solve |v(t)| = 2 on $2 \le t \le 4$. t = 3.128 (or 3.127) and t = 3.473

$$2: \begin{cases} 1 : \text{considers } |v(t)| = 2 \\ 1 : \text{answer} \end{cases}$$

(b)
$$s(t) = 10 + \int_0^t v(x) dx$$

$$s(5) = 10 + \int_0^5 v(x) dx = -9.207$$

$$2: \left\{ \begin{array}{l} 1:s(t) \\ 1:s(5) \end{array} \right.$$

- (c) v(t) = 0 when t = 0.536033, 3.317756
 - v(t) changes sign from negative to positive at time t = 0.536033.
 - v(t) changes sign from positive to negative at time t = 3.317756.

Therefore, the particle changes direction at time t = 0.536 and time t = 3.318 (or 3.317).

3:
$$\begin{cases} 1 : \text{considers } v(t) = 0 \\ 2 : \text{answers with justification} \end{cases}$$

(d) v(4) = -11.475758 < 0, a(4) = v'(4) = -22.295714 < 0

The speed is increasing at time t = 4 because velocity and acceleration have the same sign.

2 : conclusion with reason

For $t \ge 0$, a particle moves along the x-axis. The velocity of the particle at time t is given by

$$v(t) = 1 + 2\sin\left(\frac{t^2}{2}\right)$$
. The particle is at position $x = 2$ at time $t = 4$.

- (a) At time t = 4, is the particle speeding up or slowing down?
- (b) Find all times t in the interval 0 < t < 3 when the particle changes direction. Justify your answer.
- (c) Find the position of the particle at time t = 0.
- (d) Find the total distance the particle travels from time t = 0 to time t = 3.

For $t \ge 0$, a particle moves along the x-axis. The velocity of the particle at time t is given by

$$v(t) = 1 + 2\sin\left(\frac{t^2}{2}\right)$$
. The particle is at position $x = 2$ at time $t = 4$.

- (a) At time t = 4, is the particle speeding up or slowing down?
- (b) Find all times t in the interval 0 < t < 3 when the particle changes direction. Justify your answer.
- (c) Find the position of the particle at time t = 0.
- (d) Find the total distance the particle travels from time t = 0 to time t = 3.

(a)
$$v(4) = 2.978716 > 0$$

 $v'(4) = -1.164000 < 0$

=-1.164000 < 0

The particle is slowing down since the velocity and acceleration have different signs.

(b)
$$v(t) = 0 \Rightarrow t = 2.707468$$

 $2: \begin{cases} 1: t = 2.707 \\ 1: \text{justification} \end{cases}$

v(t) changes from positive to negative at t = 2.707. Therefore, the particle changes direction at this time.

(c)
$$x(0) = x(4) + \int_4^0 v(t) dt$$

= 2 + (-5.815027) = -3.815

3: { 1: integral 1: uses initial condition 1: answer

2: conclusion with reason

(d) Distance =
$$\int_0^3 |v(t)| dt = 5.301$$

 $2: \begin{cases} 1 : integral \\ 1 : answer \end{cases}$

A particle moves along the x-axis so that its velocity v at any time t, for $0 \le t \le 16$, is given by $v(t) = e^{2\sin t} - 1$. At time t = 0, the particle is at the origin.

- (a) On the axes provided, sketch the graph of $\,v(t)\,$ for $\,0\leq t\leq 16\,$.
- (b) During what intervals of time is the particle moving to the left? Give a reason for your answer.
- (c) Find the total distance traveled by the particle from t = 0 to t = 4.
- (d) Is there any time t, $0 < t \le 16$, at which the particle returns to the origin? Justify your answer.

A particle moves along the x-axis so that its velocity v at any time t, for $0 \le t \le 16$, is given by $v(t) = e^{2\sin t} - 1$. At time t = 0, the particle is at the origin.

- (a) On the axes provided, sketch the graph of v(t) for $0 \le t \le 16$.
- (b) During what intervals of time is the particle moving to the left? Give a reason for your answer.
- (c) Find the total distance traveled by the particle from t = 0 to t = 4.
- (d) Is there any time $t,\ 0 < t \le 16$, at which the particle returns to the origin? Justify your answer.

three "humps" periodic behavior

- (b) Particle is moving to the left when $v(t)<0 \ , \ {\rm i.e.} \ e^{2\sin t}<1 \ .$ $(\pi,2\pi) \ , \ (3\pi,4\pi) \ \ {\rm and} \ \ (5\pi,16]$

reasonable relative max and min values

- (c) $\int_0^4 |v(t)| dt = 10.542$ or $v(t) = e^{2 \sin t} 1 = 0$ $t = 0 \text{ or } t = \pi$ $x(\pi) = \int_0^{\pi} v(t) dt = 10.10656$ $x(4) = \int_0^4 v(t) dt = 9.67066$ $|x(\pi) x(0)| + |x(4) x(\pi)|$ = 10.542
- (d) There is no such time because $\int_0^T v(t) dt > 0 \text{ for all } T > 0.$
- 1: limits of 0 and 4 on an integral of v(t) or |v(t)| or uses x(0) and x(4) to compute distance 1: handles change of direction at student's turning point 1: answer note: 0/1 if incorrect turning point
- $2 \left\{ \begin{array}{l} 1 : \text{no such time} \\ 1 : \text{reason} \end{array} \right.$

An object moves along the x-axis with initial position x(0) = 2. The velocity of the object at time $t \ge 0$ is given by $v(t) = \sin\left(\frac{\pi}{3}t\right)$.

- (a) What is the acceleration of the object at time t = 4?
- (b) Consider the following two statements.
 - Statement I: For 3 < t < 4.5, the velocity of the object is decreasing.
 - Statement II: For 3 < t < 4.5, the speed of the object is increasing.

Are either or both of these statements correct? For each statement provide a reason why it is correct or not correct.

- (c) What is the total distance traveled by the object over the time interval $0 \le t \le 4$?
- (d) What is the position of the object at time t = 4?

An object moves along the x-axis with initial position x(0) = 2. The velocity of the object at time $t \ge 0$ is given by $v(t) = \sin\left(\frac{\pi}{2}t\right)$.

- What is the acceleration of the object at time t = 4?
- Consider the following two statements.

Statement I: For 3 < t < 4.5, the velocity of the object is decreasing.

For 3 < t < 4.5, the speed of the object is increasing.

Are either or both of these statements correct? For each statement provide a reason why it is correct or not correct.

- What is the total distance traveled by the object over the time interval $0 \le t \le 4$?
- (d) What is the position of the object at time t = 4?

(a)
$$a(4) = v'(4) = \frac{\pi}{3} \cos\left(\frac{4\pi}{3}\right)$$

= $-\frac{\pi}{6}$ or -0.523 or -0.524

1 : answer

(b) On
$$3 < t < 4.5$$
:
 $a(t) = v'(t) = \frac{\pi}{3} \cos\left(\frac{\pi}{3}t\right) < 0$

Statement I is correct since a(t) < 0.

Statement II is correct since v(t) < 0 and a(t) < 0.

limits of 0 and 4 on an integral

(c) Distance =
$$\int_0^4 |v(t)| dt = 2.387$$

$$x(t) = -\frac{3}{\pi} \cos\left(\frac{\pi}{3}t\right) + \frac{3}{\pi} + 2$$

$$x(0) = 2$$

$$x(4) = 2 + \frac{9}{2\pi} = 3.43239$$

$$v(t) = 0$$
 when $t = 3$

$$x(3) = \frac{6}{\pi} + 2 = 3.90986$$

$$|x(3) - x(0)| + |x(4) - x(3)| = \frac{15}{2\pi} = 2.387$$

1: handles change of direction at

student's turning point

0/1 if incorrect turning point or no turning point

$$x(t) = -\frac{3}{\pi}\cos\left(\frac{\pi}{3}t\right) + \frac{3}{\pi} + 2$$

(d) $x(4) = x(0) + \int_0^4 v(t) dt = 3.432$

$$x(4) = 2 + \frac{9}{2\pi} = 3.432$$

OR
$$\begin{cases}
1: & x(t) = -\frac{3}{\pi}\cos\left(\frac{\pi}{3}t\right) + C \\
1: & \text{answer}
\end{cases}$$

0/1 if no constant of integration

A particle moves along the x-axis with velocity at time $t \ge 0$ given by $v(t) = -1 + e^{1-t}$.

- (a) Find the acceleration of the particle at time t = 3.
- (b) Is the speed of the particle increasing at time t = 3? Give a reason for your answer.
- (c) Find all values of t at which the particle changes direction. Justify your answer.
- (d) Find the total distance traveled by the particle over the time interval $0 \le t \le 3$.

A particle moves along the x-axis with velocity at time $t \ge 0$ given by $v(t) = -1 + e^{1-t}$.

- (a) Find the acceleration of the particle at time t = 3.
- Is the speed of the particle increasing at time t = 3? Give a reason for your answer.
- Find all values of t at which the particle changes direction. Justify your answer.
- (d) Find the total distance traveled by the particle over the time interval $0 \le t \le 3$.

(a) $a(t) = v'(t) = -e^{1-t}$

 $2: \begin{cases} 1: v'(t) \\ 1: a(3) \end{cases}$

(b) a(3) < 0

 $v(3) = -1 + e^{-2} < 0$

Speed is increasing since v(3) < 0 and a(3) < 0.

(c) v(t) = 0 when $1 = e^{1-t}$, so t = 1.

v(t) > 0 for t < 1 and v(t) < 0 for t > 1.

Therefore, the particle changes direction at t = 1.

1: answer with reason

 $2: \left\{ \begin{array}{l} 1: \text{solves } v(t) = 0 \text{ to} \\ \\ \text{get } t = 1 \\ \\ 1: \text{justifies change in} \\ \\ \text{direction at } t = 1 \end{array} \right.$

 $= \int_{0}^{1} (-1 + e^{1-t}) dt + \int_{1}^{3} (1 - e^{1-t}) dt$ $= (-t - e^{1-t}|_{0}^{1}) + (t + e^{1-t}|_{1}^{3})$ = (-1 - 1 + 1)1: limits
1: integrand
1: antidifferentiation
1: evaluation (d) Distance = $\int_0^3 |v(t)| dt$ $= (-1 - 1 + e) + (3 + e^{-2} - 1 - 1)$ $= e + e^{-2} - 1$

OR

 $x(t) = -t - e^{1-t}$

x(0) = -e

x(1) = -2

 $x(3) = -e^{-2} - 3$

Distance = (x(1) - x(0)) + (x(1) - x(3)) $= (-2 + e) + (1 + e^{-2})$ $= e + e^{-2} - 1$

OR

1: any antiderivative

 $4: \left\{ \begin{array}{l} 1: \text{evaluates } x(t) \text{ when} \\ \\ t=0,\,1,\,3 \\ \\ 1: \text{evaluates distance} \\ \\ \text{between points} \\ \\ 1: \text{evaluates total distance} \end{array} \right.$

A particle moves along the x-axis so that its velocity at time t is given by

$$v(t) = -(t+1)\sin\left(\frac{t^2}{2}\right).$$

At time t = 0, the particle is at position x = 1.

- (a) Find the acceleration of the particle at time t = 2. Is the speed of the particle increasing at t = 2? Why or why not?
- (b) Find all times t in the open interval 0 < t < 3 when the particle changes direction. Justify your answer.
- (c) Find the total distance traveled by the particle from time t = 0 until time t = 3.
- (d) During the time interval $0 \le t \le 3$, what is the greatest distance between the particle and the origin? Show the work that leads to your answer.

A particle moves along the x-axis so that its velocity at time t is given by

$$v(t) = -(t+1)\sin\left(\frac{t^2}{2}\right).$$

At time t = 0, the particle is at position x = 1.

- (a) Find the acceleration of the particle at time t = 2. Is the speed of the particle increasing at t = 2? Why or why not?
- (b) Find all times t in the open interval 0 < t < 3 when the particle changes direction. Justify your answer
- (c) Find the total distance traveled by the particle from time t = 0 until time t = 3.
- (d) During the time interval $0 \le t \le 3$, what is the greatest distance between the particle and the origin? Show the work that leads to your answer.
- (a) a(2) = v'(2) = 1.587 or 1.588 $v(2) = -3\sin(2) < 0$ Speed is decreasing since a(2) > 0 and v(2) < 0.
- $2: \left\{ \begin{array}{l} 1: \ a(2) \\ 1: \ \text{speed decreasing} \\ \text{with reason} \end{array} \right.$
- (b) v(t)=0 when $\frac{t^2}{2}=\pi$ $t=\sqrt{2\pi} \ \text{or } 2.506 \text{ or } 2.507$ Since v(t)<0 for $0< t<\sqrt{2\pi} \ \text{and} \ v(t)>0$ for $\sqrt{2\pi}< t<3$, the particle changes directions at $t=\sqrt{2\pi}$
- $2: \left\{ \begin{array}{ll} 1: & t = \sqrt{2\pi} \text{ only} \\ 1: & \text{justification} \end{array} \right.$

- (c) Distance = $\int_0^3 |v(t)| dt = 4.333$ or 4.334
- $3: \begin{cases} 1: \text{ limits} \\ 1: \text{ integrand} \\ 1: \text{ answer} \end{cases}$
- (d) $\int_0^{\sqrt{2\pi}} v(t) dt = -3.265$ $x(\sqrt{2\pi}) = x(0) + \int_0^{\sqrt{2\pi}} v(t) dt = -2.265$

Since the total distance from t = 0 to t = 3 is 4.334, the particle is still to the left of the origin at t = 3. Hence the greatest distance from the origin is 2.265.

 $2: \left\{ \begin{array}{l} 1: \ \pm \ (\text{distance particle travels} \\ \\ \text{while velocity is negative}) \\ \\ 1: \ \text{answer} \end{array} \right.$

A particle moves along the y-axis so that its velocity v at time $t \ge 0$ is given by $v(t) = 1 - \tan^{-1}(e^t)$.

At time t = 0, the particle is at y = -1. (Note: $tan^{-1}x = \arctan x$)

- (a) Find the acceleration of the particle at time t = 2.
- (b) Is the speed of the particle increasing or decreasing at time t = 2? Give a reason for your answer.
- (c) Find the time $t \ge 0$ at which the particle reaches its highest point. Justify your answer.
- (d) Find the position of the particle at time t = 2. Is the particle moving toward the origin or away from the origin at time t = 2? Justify your answer.

A particle moves along the y-axis so that its velocity v at time $t \ge 0$ is given by $v(t) = 1 - \tan^{-1}(e^t)$.

At time t = 0, the particle is at y = -1. (Note: $tan^{-1} x = \arctan x$)

- (a) Find the acceleration of the particle at time t = 2.
- (b) Is the speed of the particle increasing or decreasing at time t = 2? Give a reason for your answer.
- (c) Find the time $t \ge 0$ at which the particle reaches its highest point. Justify your answer.
- (d) Find the position of the particle at time t = 2. Is the particle moving toward the origin or away from the origin at time t = 2? Justify your answer.
- (a) a(2) = v'(2) = -0.132 or -0.133

1: answer

(b) v(2) = -0.436Speed is increasing since a(2) < 0 and v(2) < 0. 1: answer with reason

(c) v(t) = 0 when $\tan^{-1}(e^t) = 1$ $t = \ln(\tan(1)) = 0.443$ is the only critical value for y.

$$v(t) > 0$$
 for $0 < t < \ln(\tan(1))$
 $v(t) < 0$ for $t > \ln(\tan(1))$

y(t) has an absolute maximum at t = 0.443.

3: $\begin{cases} 1 : sets \ v(t) = 0 \\ 1 : identifies \ t = 0.443 \text{ as a candidate} \\ 1 : justifies absolute maximum} \end{cases}$

(d) $y(2) = -1 + \int_0^2 v(t) dt = -1.360 \text{ or } -1.361$

The particle is moving away from the origin since v(2) < 0 and y(2) < 0.

4:
$$\begin{cases} 1: \int_0^2 v(t) dt \\ 1: \text{ handles initial condition} \\ 1: \text{ value of } y(2) \\ 1: \text{ answer with reason} \end{cases}$$

A particle moves along the x-axis so that its velocity v at time t, for $0 \le t \le 5$, is given by

$$v(t) = \ln(t^2 - 3t + 3)$$
. The particle is at position $x = 8$ at time $t = 0$.

- (a) Find the acceleration of the particle at time t = 4.
- (b) Find all times t in the open interval 0 < t < 5 at which the particle changes direction. During which time intervals, for $0 \le t \le 5$, does the particle travel to the left?
- (c) Find the position of the particle at time t = 2.
- (d) Find the average speed of the particle over the interval $0 \le t \le 2$.

A particle moves along the x-axis so that its velocity v at time t, for $0 \le t \le 5$, is given by

- $v(t) = \ln(t^2 3t + 3)$. The particle is at position x = 8 at time t = 0.
- (a) Find the acceleration of the particle at time t = 4.
- (b) Find all times t in the open interval 0 < t < 5 at which the particle changes direction. During which time intervals, for $0 \le t \le 5$, does the particle travel to the left?
- (c) Find the position of the particle at time t = 2.
- (d) Find the average speed of the particle over the interval $0 \le t \le 2$.

(a)
$$a(4) = v'(4) = \frac{5}{7}$$

1: answer

(b)
$$v(t) = 0$$

 $t^2 - 3t + 3 = 1$
 $t^2 - 3t + 2 = 0$
 $(t-2)(t-1) = 0$
 $t = 1, 2$

3:
$$\begin{cases} 1 : sets \ v(t) = 0 \\ 1 : direction \ change \ at \ t = 1, 2 \\ 1 : interval \ with \ reason \end{cases}$$

$$v(t) > 0$$
 for $0 < t < 1$
 $v(t) < 0$ for $1 < t < 2$

$$v(t) > 0$$
 for $2 < t < 5$

The particle changes direction when t = 1 and t = 2. The particle travels to the left when 1 < t < 2.

(c)
$$s(t) = s(0) + \int_0^t \ln(u^2 - 3u + 3) du$$

 $s(2) = 8 + \int_0^2 \ln(u^2 - 3u + 3) du$
= 8.368 or 8.369

3:
$$\begin{cases} 1: \int_0^2 \ln(u^2 - 3u + 3) du \\ 1: \text{ handles initial condition} \\ 1: \text{ answer} \end{cases}$$

(d)
$$\frac{1}{2} \int_0^2 |v(t)| dt = 0.370 \text{ or } 0.371$$

$$2: \begin{cases} 1: integra\\ 1: answer$$

A particle moves along the x-axis so that its velocity v at time $t \ge 0$ is given by $v(t) = \sin(t^2)$. The graph of v is shown above for $0 \le t \le \sqrt{5\pi}$. The position of the particle at time t is x(t) and its position at time t = 0 is x(0) = 5.

- (a) Find the acceleration of the particle at time t = 3.
- (b) Find the total distance traveled by the particle from time t = 0 to t = 3.
- (c) Find the position of the particle at time t = 3.
- (d) For $0 \le t \le \sqrt{5\pi}$, find the time t at which the particle is farthest to the right. Explain your answer.

A particle moves along the x-axis so that its velocity v at time $t \ge 0$ is given by $v(t) = \sin(t^2)$. The graph of v is shown above for $0 \le t \le \sqrt{5\pi}$. The position of the particle at time t is x(t) and its position at time t = 0 is x(0) = 5.

- (a) Find the acceleration of the particle at time t = 3.
- (b) Find the total distance traveled by the particle from time t = 0 to t = 3.
- (c) Find the position of the particle at time t = 3.
- (d) For $0 \le t \le \sqrt{5\pi}$, find the time t at which the particle is farthest to the right. Explain your answer.
- (a) $a(3) = v'(3) = 6\cos 9 = -5.466$ or -5.467

(b) Distance =
$$\int_{0}^{3} |v(t)| dt = 1.702$$

OR

For 0 < t < 3, v(t) = 0 when $t = \sqrt{\pi} = 1.77245$ and

$$t = \sqrt{2\pi} = 2.50663$$

x(0) = 5

$$x(\sqrt{\pi}) = 5 + \int_{0}^{\sqrt{\pi}} v(t) dt = 5.89483$$

$$x(\sqrt{2\pi}) = 5 + \int_0^{\sqrt{2\pi}} v(t) dt = 5.43041$$

$$x(3) = 5 + \int_{0}^{3} v(t) dt = 5.77356$$

$$|x(\sqrt{\pi}) - x(0)| + |x(\sqrt{2\pi}) - x(\sqrt{\pi})| + |x(3) - x(\sqrt{2\pi})| = 1.702$$

(c)
$$x(3) = 5 + \int_0^3 v(t) dt = 5.773 \text{ or } 5.774$$

(d) The particle's rightmost position occurs at time $t = \sqrt{\pi} = 1.772$.

The particle changes from moving right to moving left at those times t for which v(t) = 0 with v(t) changing from positive to negative, namely at $t = \sqrt{\pi}, \sqrt{3\pi}, \sqrt{5\pi}$ (t = 1.772, 3.070, 3.963).

Using $x(T) = 5 + \int_0^T v(t) dt$, the particle's positions at the times it

changes from rightward to leftward movement are:

$$T: 0 \sqrt{\pi} \sqrt{3\pi} \sqrt{5\pi}$$

The particle is farthest to the right when $T = \sqrt{\pi}$.

$$2: \begin{cases} 1 : \text{setup} \\ 1 : \text{answe} \end{cases}$$

$$3: \begin{cases} 2 & \text{1: integrand} \\ 1: \text{uses } x(0) = 5 \end{cases}$$

3:
$$\begin{cases} 1 : sets v(t) = 0 \\ 1 : answer \\ 1 : reason \end{cases}$$

A particle moves along the x-axis with position at time t given by $x(t) = e^{-t} \sin t$ for $0 \le t \le 2\pi$.

- (a) Find the time t at which the particle is farthest to the left. Justify your answer.
- (b) Find the value of the constant A for which x(t) satisfies the equation Ax''(t) + x'(t) + x(t) = 0 for $0 < t < 2\pi$.

A particle moves along the x-axis with position at time t given by $x(t) = e^{-t} \sin t$ for $0 \le t \le 2\pi$.

- (a) Find the time t at which the particle is farthest to the left. Justify your answer.
- (b) Find the value of the constant A for which x(t) satisfies the equation Ax''(t) + x'(t) + x(t) = 0 for $0 < t < 2\pi$.
- (a) $x'(t) = -e^{-t} \sin t + e^{-t} \cos t = e^{-t} (\cos t \sin t)$ x'(t) = 0 when $\cos t = \sin t$. Therefore, x'(t) = 0 on $0 \le t \le 2\pi$ for $t = \frac{\pi}{4}$ and $t = \frac{5\pi}{4}$.

The candidates for the absolute minimum are at $t=0,\frac{\pi}{4},\frac{5\pi}{4}$, and 2π .

t	x(t)
0	$e^0\sin(0)=0$
$\frac{\pi}{4}$	$e^{-\frac{\pi}{4}}\sin\left(\frac{\pi}{4}\right) > 0$
$\frac{5\pi}{4}$	$e^{-\frac{5\pi}{4}}\sin\left(\frac{5\pi}{4}\right) < 0$
2π	$e^{-2\pi}\sin(2\pi)=0$

The particle is farthest to the left when $t = \frac{5\pi}{4}$.

5:
$$\begin{cases} 2: x'(t) \\ 1: \text{sets } x'(t) = 0 \\ 1: \text{answer} \\ 1: \text{justification} \end{cases}$$

(b) $x''(t) = -e^{-t}(\cos t - \sin t) + e^{-t}(-\sin t - \cos t)$ = $-2e^{-t}\cos t$

$$Ax''(t) + x'(t) + x(t)$$
= $A(-2e^{-t}\cos t) + e^{-t}(\cos t - \sin t) + e^{-t}\sin t$
= $(-2A + 1)e^{-t}\cos t$
= 0

Therefore, $A = \frac{1}{2}$.

4:
$$\begin{cases} 2: x''(t) \\ 1: \text{substitutes } x''(t), x'(t), \text{ and } x(t) \\ \text{into } Ax''(t) + x'(t) + x(t) \\ 1: \text{ answer} \end{cases}$$

t (hours)	0	0.3	1.7	2.8	4
$v_P(t)$ (meters per hour)	0	55	-29	55	48

The velocity of a particle, P, moving along the x-axis is given by the differentiable function v_P , where $v_P(t)$ is measured in meters per hour and t is measured in hours. Selected values of $v_P(t)$ are shown in the table above. Particle P is at the origin at time t = 0.

- (a) Justify why there must be at least one time t, for $0.3 \le t \le 2.8$, at which $v_{P}'(t)$, the acceleration of particle P, equals 0 meters per hour per hour.
- (b) Use a trapezoidal sum with the three subintervals [0, 0.3], [0.3, 1.7], and [1.7, 2.8] to approximate the value of $\int_0^{2.8} v_P(t) dt$.
- (c) A second particle, Q, also moves along the x-axis so that its velocity for $0 \le t \le 4$ is given by $v_Q(t) = 45\sqrt{t}\cos\left(0.063t^2\right)$ meters per hour. Find the time interval during which the velocity of particle Q is at least 60 meters per hour. Find the distance traveled by particle Q during the interval when the velocity of particle Q is at least 60 meters per hour.
- (d) At time t = 0, particle Q is at position x = -90. Using the result from part (b) and the function v_Q from part (c), approximate the distance between particles P and Q at time t = 2.8.

t (hours)	0	0.3	1.7	2.8	4
$v_P(t)$ (meters per hour)	0	55	-29	55	48

The velocity of a particle, P, moving along the x-axis is given by the differentiable function v_P , where $v_P(t)$ is measured in meters per hour and t is measured in hours. Selected values of $v_P(t)$ are shown in the table above. Particle P is at the origin at time t = 0.

- (a) Justify why there must be at least one time t, for $0.3 \le t \le 2.8$, at which $v_{P}'(t)$, the acceleration of particle P, equals 0 meters per hour per hour.
- (b) Use a trapezoidal sum with the three subintervals [0, 0.3], [0.3, 1.7], and [1.7, 2.8] to approximate the value of $\int_0^{2.8} v_P(t) dt$.
- (c) A second particle, Q, also moves along the x-axis so that its velocity for $0 \le t \le 4$ is given by $v_Q(t) = 45\sqrt{t}\cos\left(0.063t^2\right)$ meters per hour. Find the time interval during which the velocity of particle Q is at least 60 meters per hour. Find the distance traveled by particle Q during the interval when the velocity of particle Q is at least 60 meters per hour.
- (d) At time t = 0, particle Q is at position x = -90. Using the result from part (b) and the function v_Q from part (c), approximate the distance between particles P and Q at time t = 2.8.

