AP FRQ Review – Mr. Rich Name: AP Calculus AB

Topic 9: Charts f, f', f"

x	-2	-2 < x < -1	-1	-1 < x < 1	1	1 < <i>x</i> < 3	3
f(x)	12	Positive	8	Positive	2	Positive	7
f'(x)	-5	Negative	0	Negative	0	Positive	$\frac{1}{2}$
g(x)	-1	Negative	0	Positive	3	Positive	1
g'(x)	2	Positive	$\frac{3}{2}$	Positive	0	Negative	-2

The twice-differentiable functions f and g are defined for all real numbers x. Values of f, f', g, and g' for various values of x are given in the table above.

- (a) Find the x-coordinate of each relative minimum of f on the interval [-2, 3]. Justify your answers.
- (b) Explain why there must be a value c, for -1 < c < 1, such that f''(c) = 0.
- (c) The function h is defined by $h(x) = \ln(f(x))$. Find h'(3). Show the computations that lead to your answer.
- (d) Evaluate $\int_{-2}^{3} f'(g(x))g'(x) dx$.

x	f(x)	f'(x)	g(x)	g'(x)
1	-6	3	2	8
2	2	-2	-3	0
3	8	7	6	2
6	4	5	3	-1

The functions f and g have continuous second derivatives. The table above gives values of the functions and their derivatives at selected values of x.

(a) Let k(x) = f(g(x)). Write an equation for the line tangent to the graph of k at x = 3.

(b) Let
$$h(x) = \frac{g(x)}{f(x)}$$
. Find $h'(1)$.

(c) Evaluate $\int_1^3 f''(2x) dx$.

x	0	0 < x < 1	1	1 < x < 2	2	2 < x < 3	3	3 < x < 4
f(x)	-1	Negative	0	Positive	2	Positive	0	Negative
f'(x)	4	Positive	0	Positive	DNE	Negative	-3	Negative
f''(x)	-2	Negative	0	Positive	DNE	Negative	0	Positive

Let f be a function that is continuous on the interval [0, 4). The function f is twice differentiable except at x = 2. The function f and its derivatives have the properties indicated in the table above, where DNE indicates that the derivatives of f do not exist at x = 2.

- (a) For 0 < x < 4, find all values of x at which f has a relative extremum. Determine whether f has a relative maximum or a relative minimum at each of these values. Justify your answer.
- (b) On the axes provided, sketch the graph of a function that has all the characteristics of *f*. (Note: Use the axes provided in the pink test booklet.)
- (c) Let g be the function defined by $g(x) = \int_{1}^{x} f(t) dt$ on the open interval (0, 4). For

0 < x < 4, find all values of x at which g has a relative extremum. Determine whether g has a relative maximum or a relative minimum at each of these values. Justify your answer.

(d) For the function g defined in part (c), find all values of x, for 0 < x < 4, at which the graph of g has a point of inflection. Justify your answer.

x	f(x)	f'(x)	g(x)	g'(x)
1	6	4	2	5
2	9	2	3	1
3	10	- 4	4	2
4	-1	3	6	7

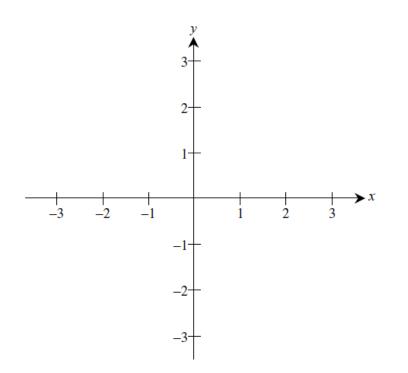
The functions f and g are differentiable for all real numbers, and g is strictly increasing. The table above gives values of the functions and their first derivatives at selected values of x. The function h is given by h(x) = f(g(x)) - 6.

- (a) Explain why there must be a value r for 1 < r < 3 such that h(r) = -5.
- (b) Explain why there must be a value c for 1 < c < 3 such that h'(c) = -5.
- (c) Let w be the function given by $w(x) = \int_{1}^{g(x)} f(t) dt$. Find the value of w'(3).
- (d) If g^{-1} is the inverse function of g, write an equation for the line tangent to the graph of $y = g^{-1}(x)$ at x = 2.

Let f be a function that is <u>even</u> and continuous on the closed interval [-3,3]. The function f and its derivatives have the properties indicated in the table below.

X	0	0 < x < 1	1	1 < x < 2	2	2 < x < 3
f (x)	1	Positive	0	Negative	-1	Negative
f '(x)	Undefined	Negative	0	Negative	Undefined	Positive
f ''(x)	Undefined	Positive	0	Negative	Undefined	Negative

- (a) Find the *x*-coordinate of each point at which *f* attains an absolute maximum value or an absolute minimum value. For each *x*-coordinate you give, state whether *f* attains an absolute maximum or an absolute minimum.
- (b) Find the x-coordinate of each point of inflection on the graph of f. Justify your answer.
- (c) In the *xy*-plane provided below, sketch the graph of a function with all the given characteristics of f.



x	-1.5	-1.0	-0.5	0	0.5	1.0	1.5
f(x)	-1	-4	-6	-7	-6	-4	$^{-1}$
f'(x)	-7	-5	-3	0	3	5	7

Let f be a function that is differentiable for all real numbers. The table above gives the values of f and its derivative f' for selected points x in the closed interval $-1.5 \le x \le 1.5$. The second derivative of f has the property that f''(x) > 0 for $-1.5 \le x \le 1.5$.

- (a) Evaluate $\int_{0}^{1.5} (3f'(x)+4) dx$. Show the work that leads to your answer.
- (b) Write an equation of the line tangent to the graph of f at the point where x = 1. Use this line to approximate the value of f(1.2). Is this approximation greater than or less than the actual value of f(1.2)? Give a reason for your answer.
- (c) Find a positive real number r having the property that there must exist a value c with 0 < c < 0.5 and f''(c) = r. Give a reason for your answer.
- (d) Let g be the function given by $g(x) = \begin{cases} 2x^2 x 7 & \text{for } x < 0\\ 2x^2 + x 7 & \text{for } x \ge 0. \end{cases}$

The graph of g passes through each of the points (x, f(x)) given in the table above. Is it possible that f and g are the same function? Give a reason for your answer.